February 23, 2001
Name
In the first 3 problems, each part counts 6 points (total 42 points) and the final 4 problems count as marked. The total number of points available is 112 .
Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

1. Questions (a) through (e) refer to the graph of the function f given below.

(a) $\lim _{x \rightarrow 1} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: Use the blotter test by covering up the left part and then the right part to determine the one-sided limits, both of which are 1. Therefore, $\lim _{x \rightarrow 1} f(x)=1$.
(b) $\lim _{x \rightarrow 2^{-}} f(x)=$
(A) 0
(B) 1
(C) 2
(D) 4
(E) does not exist

Solution: Again use the blotter test by covering up the right part to determine the one-sided limits, both of which are 1 . Therefore, $\lim _{x \rightarrow 2^{-}} f(x)=$ 0
(c) A good estimate of $f^{\prime}(0)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(\mathbf{E}) there is no good estimate

Solution: The tangent line seems to be horizontal, therefore the best estimate of its slope is 0 .
(d) A good estimate of $f^{\prime}(-1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: The tangent line has a negative slope, therefore the best estimate of its slope is -1 .
(e) A good estimate of $f^{\prime}(2)$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) there is no good estimate

Solution: There is no tangent line, so there is no good estimate of $f^{\prime}(2)$.
2. The line tangent to the graph of a function f at the point $(2,3)$ on the graph also goes through the point $(-2,7)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: The slope of the tangent line is $\frac{2-(-2)}{3-7}=-1$, so $f^{\prime}(2)=-1$.
3. What is the slope of the tangent line to the graph of $f(x)=2 x^{-2}$ at the point (2,1/2)?
(A) $-1 / 2$
(B) $-1 / 4$
(C) $-1 / 8$
(D) $-1 / 16$
(E) $-1 / 512$

Solution: $f^{\prime}(x)=-4 x^{-3}$, which at $x=2$ has the value $-1 / 2$.
On all the following questions, show your work.
4. (15 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{2 x-1}$ and let $[a, b]=[1,5]$. Finally, suppose $M=2$. Find the number c whose existence is guaranteed by IVT.
Solution: Solve the equation $\sqrt{2 x-1}=2$ by squaring both sides. You get $x=5 / 2$.
5. (15 points) The total weekly cost in dollars incurred by the Lincoln Record Company in pressing x playing records is given by $C(x)=2000+3 x-0.01 x^{2}$ for x in the range 0 to 6000 .
(a) Find the marginal cost function $C^{\prime}(x)$.

Solution: $C^{\prime}(x)=3-0.02 x$
(b) Find the average cost function $\bar{C}(x)$.

Solution: $\bar{C}(x)=\frac{2000+3 x-0.01 x^{2}}{x}=\frac{2000}{x}+3-0.01 x$.
(c) Find the marginal average cost function $\bar{C}^{\prime}(x)$.

Solution: $\bar{C}^{\prime}(x)=-2000 x^{-2}-0.01$.
(d) Interpret your results in (c). Is the average cost growing or falling as the company produces more units?
Solution: The function $\bar{C}^{\prime}(x)=-2000 x^{-2}-0.01$ is negative throughout its domain. This means that the average cost decreases the more records are produced.
6. (15 points) Let $f(x)=4 / x$.
(a) Construct $\frac{f(3+h)-f(3)}{h}$

Solution: Note that $\frac{f(3+h)-f(3)}{h}=\frac{\frac{4}{3+h}-\frac{4}{3}}{h}=\frac{\frac{4 \cdot 3 \cdot}{(3+h) \cdot 3}-\frac{4(3+h)}{3(3+h)}}{h}=\frac{12-4(3+h)}{3(3+h) h}$.
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(3)$.

Solution: continued from above: $=\frac{12-12-4 h}{3(3+h) h}=\frac{-4 h}{3(3+h) h}=\frac{-4}{3(3+h)}$. Therefore, $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{-4}{3(3+h)}=-\frac{4}{9}$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(3,4 / 3)$.
Solution: Use the point-slope formula to get $y-4 / 3=-4 / 9(x-3)$ which in slope-intercept form is $y=-\frac{4}{9} x+\frac{8}{3}$.
7. (25 points) Compute the following derivatives.
(a) Let $f(x)=x^{3}+x^{-\frac{1}{2}}$. Find $\frac{d}{d x} f(x)$.

Solution: $\frac{d}{d x} f(x)=3 x^{2}-\frac{1}{2} x^{-\frac{3}{2}}$.
(b) Let $g(x)=\sqrt{x^{2}+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=\frac{1}{2}\left(x^{2}+4\right)^{-\frac{1}{2}} \cdot 2 x$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{4}-1\right)\right)$

Solution: $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{4}-1\right)\right)=\frac{d}{d x}\left((3 x+1)^{2}\right) \cdot\left(4 x^{4}-1\right)+(3 x+$ 1) $)^{2} \frac{d}{d x}\left(4 x^{4}-1\right)=2(3 x+1)\left(4 x^{4}-1\right)+(3 x+1)^{2} \cdot 16 x^{3}$.
(d) Find $\frac{d}{d x} \frac{2 x^{2}+1}{x+2}$

Solution: Use the quotient rule to get $\frac{(4 x+1)(x+2)-\left(2 x^{2}+1\right)}{(x+2)^{2}}=\frac{2 x^{2}+9 x}{(x+2)^{2}}$.
(e) Find $\frac{d}{d t}\left(t^{2}+1 / t\right)^{2}$.

Solution: $\frac{d}{d t}\left(t^{2}+1 / t\right)^{2}=2\left(t^{2}+t^{-1}\right)\left(2 t-t^{-2}\right)=2\left(2 t^{3}+1-t^{-3}\right)$.

