October 28, $2014 \quad$ Name
The problems count as marked. The total number of points available is 145. Throughout this test, show your work.

1. (30 points) Let $f(x)=3 x^{4}+4 x^{3}-72 x^{2}$.
(a) Find the critical points of f.

Solution: First note that $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, which factors into $12 x(x+4)(x-3)$, so the critical points of f are $0,-4$ and 3 .
(b) Build the sign chart for $f^{\prime}(x)$.

Solution: First note that $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, which factors into $12 x(x+4)(x-3)$, so we can build the sign chart for f^{\prime} using the branch points $0,-4$ and 3 . Doing this yields the result that f^{\prime} is negative over each of the intervals $(-\infty,-4)$ and $(0,3)$. Therefore f is decreasing over these two intervals.
(c) Use this information in part (b) to find the intervals over which f is increasing.
Solution: First note that $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, which factors into $12 x(x+4)(x-3)$, so we can build the sign chart for f^{\prime} using the branch points $0,-4$ and 3 . Doing this yields the result that f^{\prime} is negative over each of the intervals $(-\infty,-4)$ and $(0,3)$. Therefore f is decreasing over these two intervals.
(d) Discuss the concavity of f.

Solution: To discuss the concavity of f, we must build the sign chart for $f^{\prime \prime}(x)$. $f^{\prime \prime}(x)=36 x^{2}+24 x-144$. Using the quadratic formula, we find that $f^{\prime \prime}(x)=0$ has two roots, $x=\frac{-2 \pm \sqrt{148}}{6}$. So $x \approx 1.69, x \approx-2.36$. Since the graph of $f^{\prime \prime}$ is a parabola which opens upwards, we can say that f is concave downward between these two values and upwards on the other two intervals.
(e) Find $f(1)$ and $f^{\prime}(1)$. Use this information to find the line tangent to f at $(1, f(1))$ in slope-intercept form.
Solution: First note that $f(1)=-63$. Since $f^{\prime}(x)=12 x^{3}+12 x^{2}-144 x$, it follows that $f^{\prime}(1)=-120$. So the tangent line is $y+63=-120(x-1)=$ $-120 x+120$, so the line in slope-intercept form is $y=-120 x+57$.
2. (35 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=2 f(x) \cdot g(x)$. Compute $L^{\prime}(5)$.

Solution: $L^{\prime}(x)=2\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right)$, so $L^{\prime}(5)=2\left(f^{\prime}(5) g(5)+\right.$ $\left.g^{\prime}(5) f(5)\right)=2(3 \cdot 4+1 \cdot 5)=34$.
(b) Let $U(x)=f(3 x) \div g(2 x)$. Compute $U(2)$ and $U^{\prime}(2)$.

Solution: $\quad U(2)=f(6) \div g(4)=0$. By the chain and quotient rules, $U^{\prime}(x)=\frac{f^{\prime}(3 x) \cdot 3 \cdot g(2 x)-g^{\prime}(2 x) \cdot 2 \cdot f(3 x)}{(g(2 x))^{2}}$, so $U^{\prime}(2)=\frac{f^{\prime}(6) \cdot 3 \cdot g(4)-g^{\prime}(4) \cdot 2 \cdot f(6)}{(g(4))^{2}}=$ $\frac{3 \cdot 3 \cdot 2-6 \cdot 2 \cdot 0}{4}=\frac{18-0}{4}=9 / 2$.
(c) Let $K(x)=g(x+f(x))$. Compute $K(3)$ and $K^{\prime}(3)$.

Solution: $K(2)=g(4)+f(2)=2+6=8$ and $K^{\prime}(2)=2 g^{\prime}(4)+f^{\prime}(2)=$ $12+4=16$.
(d) Let $V(x)=f(g(f(x)))$. Compute $V^{\prime}(3)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=f^{\prime}(g(2 x)) \cdot g^{\prime}(2 x) \cdot 2$, so $V^{\prime}(3)=f^{\prime}(g(6)) \cdot g^{\prime}(6) \cdot 2=f^{\prime}(2) \cdot g^{\prime}(6) \cdot 2=4 \cdot 4 \cdot 2=32$.
(e) Let $W(x)=g\left(x^{2}-1\right)$. Compute $W^{\prime}(2)$.

Solution: By the chain rule, $W^{\prime}(x)=g^{\prime}\left(x^{2}-1\right) \cdot 2 x$ so $W^{\prime}(2)=g^{\prime}(3)$. $2 \cdot 2=3 \cdot 4=12$.
3. (20 points) Recall that $\frac{d}{d x} e^{g(x)}=e^{g(x)} \cdot g^{\prime}(x)$. Find the intervals over which the function $f(x)=x^{2} e^{2 x}$ is increasing. Write your answer in interval notation.
Solution: Use the product rule to get $f^{\prime}(x)=2 x e^{2 x}+x^{2} e^{2 x} \cdot 2=e^{2 x}\left(2 x^{2}+\right.$ $2 x)=e^{2 x} \cdot 2 x \cdot(x+1)$. Build the sign chart for f^{\prime} to learn that $f^{\prime}(x)$ is negative only when $0<x<1$. So f is increasing on both $(-\infty,-1]$ and $[0, \infty)$.
4. (15 points) Two positive numbers x and y are related by $2 x+3 y=16$. What is the largest possible product $x y$ could be, and what pair (x, y) achieves that product? Note that if $y=2$, then $x=5$ and the product $x y=10$. If $y=4$, then $x=2$ and the product is 8 .
Solution: Solve $2 x+3 y=16$ for y to get $f(x)=x y=x\left(\frac{16-2 x}{3}\right)=\frac{16 x-2 x^{2}}{3}$. So $f^{\prime}(x)=(16-4 x) / 3$ and $x=4$ is the only critical point. So $x=4$ and $y=8 / 3$. It follows that the maximum value of $x y$ is $4 \cdot 8 / 3=32 / 3$.
5. (15 points) Two positive numbers x and y are related by $x y=10$. What is the smallest possible value $6 x+3 y$ could have?

Solution: Note that $y=10 / x$, so the sum to be maximized is $f(x)=6 x+$ $3 \cdot 10 / x$. Taking the derivative, we have $f^{\prime}(x)=6-30 / x^{2}$ which is zero when $x=\sqrt{5}$. Looking at the sign chart for f^{\prime}, we see that f^{\prime} is negative on the left of $\sqrt{5}$ and positive to the right of it. Therefore the smallest possible value of $6 x+3 y$ is $6 \sqrt{5}+3 \cdot 2 \sqrt{5}=12 \sqrt{5}$.
6. (30 points) Consider the function

$$
r(x)=\frac{\left(x^{2}-4\right)(6 x)}{(3 x-6)(x+1)(x-3)}
$$

Use the Test Interval Technique to find the sign chart of $r(x)$. Find the zeros and the horizontal and vertical asymptotes, and sketch the graph of r. Your graph must be consistent with the information you find in the sign chart.

Solution:

Solution: Notice first that r is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-2)(x+2)(6 x)}{3(x-2)(x-3)(x+1)}
$$

We can remove the common factor $x-2$ with the understanding that we are (very slightly) enlarging the domain of $r: r(x)=\frac{(x+2)(6 x)}{3(x-3)(x+1)}$. Next find the branch points. These are the points at which r can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $0,-1,-2,3$. The horizontal asymptote is $y=6 / 3=2$, the vertical asymptotes
are $x=3$ and $x=-1$ and the zeros of r are $x=0$ and $x=-2$. Again we select test points and find the sign of f at of these points to get the sign chart.

