October 28, $2014 \quad$ Name
The problems count as marked. The total number of points available is 145. Throughout this test, show your work.

1. (30 points) Let $f(x)=3 x^{4}+4 x^{3}-72 x^{2}$.
(a) Find the critical points of f.
(b) Build the sign chart for $f^{\prime}(x)$.
(c) Use this information in part (b) to find the intervals over which f is increasing.
(d) Discuss the concavity of f.
(e) Find $f(1)$ and $f^{\prime}(1)$. Use this information to find the line tangent to f at $(1, f(1))$ in slope-intercept form.
2. (35 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=2 f(x) \cdot g(x)$. Compute $L^{\prime}(5)$.
(b) Let $U(x)=f(3 x) \div g(2 x)$. Compute $U(2)$ and $U^{\prime}(2)$.
(c) Let $K(x)=g(x+f(x))$. Compute $K(3)$ and $K^{\prime}(3)$.
(d) Let $V(x)=f(g(f(x)))$. Compute $V^{\prime}(3)$.
(e) Let $W(x)=g\left(x^{2}-1\right)$. Compute $W^{\prime}(2)$.
3. (20 points) Recall that $\frac{d}{d x} e^{g(x)}=e^{g(x)} \cdot g^{\prime}(x)$. Find the intervals over which the function $f(x)=x^{2} e^{2 x}$ is increasing. Write your answer in interval notation.
4. (15 points) Two positive numbers x and y are related by $2 x+3 y=16$. What is the largest possible product $x y$ could be, and what pair (x, y) achieves that product? Note that if $y=2$, then $x=5$ and the product $x y=10$. If $y=4$, then $x=2$ and the product is 8 .
5. (15 points) Two positive numbers x and y are related by $x y=10$. What is the smallest possible value $6 x+3 y$ could have?
6. (30 points) Consider the function

$$
r(x)=\frac{\left(x^{2}-4\right)(6 x)}{(3 x-6)(x+1)(x-3)} .
$$

Use the Test Interval Technique to find the sign chart of $r(x)$. Find the zeros and the horizontal and vertical asymptotes, and sketch the graph of r. Your graph must be consistent with the information you find in the sign chart.

