1

1. (20 points) Answer the following questions about the function f

questions about the function f whose graph is shown.

(a) $\lim_{x \to 1} f(x) =$ The limit does not exist because the left and right limits are different.

(b)
$$\lim_{x \to 2^+} f(x) = 2$$

(c) Estimate f'(-1), and explain why your estimate is worthy.

-2, the tangent line slopes downward and y changes about twice as fast as x.

(d) Estimate f'(0). Explain your answer. 0, the tangent line seems to be horizontal.

On all the following questions, show your work.

- 2. (15 points)
 - (a) State the hypothesis of the Intermediate Value Theorem (IVT). The theorem requires that the function f be continuous over an inteval [a, b], and that M be a value of f between f(a) and f(b).
 - (b) State the conclusion of the Intermediate Value Theorem.

The conclusion is that there exists a number c such that a < c < b and f(c) = M.

Your name

Calculus

Test 2

Math 1120

July 20, 1999

Math 1120

Calculus

(c) Does the function $f(x) = \sqrt{x+3}$ satisfy the hypothesis of IVT over the interval [1,13]. If so, find a whole number M between f(1) and f(13), and then find a number c in the interval (1,13) such that f(c) = M.

The only integer between $f(1) = \sqrt{1+3} = 2$ and $f(13) = \sqrt{13+3} = 4$ is 3, so we need to solve the equation $f(c) = \sqrt{c+3} = 3$. Squaring both sides yields c+3=9, and it follows that c=6.

- 3. (20 points) Let $f(x) = 3x^2 + 1$
 - (a) Compute the derivative f' of f using the definition of derivative.

Compute $\frac{f(x+h)-f(x)}{h}$, simplify and eliminate the *h* in both numerator and denominator to get $\lim_{h\to 0} \frac{3(2xh+h^2)}{h} = \lim_{h\to 0} 6x + h = 6x$.

- (b) What is the slope of the line tangent to the graph of f at the point (1, 4)? $f'(1) = 6 \cdot 1 = 6.$
- (c) Find an equation for the line tangent to the graph of f at the point (1, 4)y-4=6(x-1) or y=6x-2.
- 4. (30 points) Compute the following derivatives.

(a) Let
$$f(x) = x^2 - 1/x$$
. Find $\frac{d}{dx}f(x)$.
 $f'(x) = 2x + \frac{1}{x^2}$.

(b) Let
$$g(x) = \sqrt{x^2 + 4}$$
. What is $g'(x)$?
 $g'(x) = \frac{1}{2}(x^2 + 4)^{-\frac{1}{2}} \cdot 2x = \frac{x}{\sqrt{x^2 + 4}}$.

(c) Find
$$\frac{d}{dx}(2x+1)^4 \cdot (4x^2-1)$$

$$\frac{d}{dx}(2x+1)^4 \cdot (4x^2-1) = (2x+1)^4(8x) + (4x^2-1) \cdot 4(2x+1)^3 \cdot 2$$

= $8x(2x+1)^4 + 8(4x^2-1)(2x+1)^3$.

(d) Find
$$\frac{d}{dx} \frac{2x+1}{x^2+2}$$

$$\frac{d}{dx} \frac{2x+1}{x^2+2} = \frac{2(x^2+2)-2x(2x+1)}{(x^2+2)^2} = \frac{-2x^2-2x+4}{(x^2+2)^2}.$$

(e) Find
$$\frac{d}{dt}(t^{-1}+t^{-2})^3$$
.
 $\frac{1}{dt}(t^{-1}+t^{-2})^3 = 3(t^{-1}+t^{-2})^2(-t^{-2}-2t^{-3}).$

Math 1120

Calculus

- 5. (20 points) Let $C(x) = 8000 + 200x 0.1x^2$, for $0 \le x \le 400$ be the cost in dollars of producing x air conditioners.
 - (a) Find the cost of producing the 301^{st} air conditioner. C(301) C(300) = 139.9
 - (b) Find the average cost function $\overline{C}(x)$. $\overline{C}(x) = \frac{8000+200x-0.1x^2}{x}$.
 - (c) Find the rate of change of the cost with respect to x when x = 300. C'(x) = 200 - 0.2x, so C'(300) = 200 - 0.2(300) = 200 - 60 = 140.