July 20, 1999
Your name \qquad
On all the following questions, show your work.

1. (20 points) Answer the following questions about the function f whose graph is shown.

(a) $\lim _{x \rightarrow 1} f(x)=$

The limit does not exist because the left and right limits are different.
(b) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(c) Estimate $f^{\prime}(-1)$, and explain why your estimate is worthy.
-2 , the tangent line slopes downward and y changes about twice as fast as x.
(d) Estimate $f^{\prime}(0)$. Explain your answer.

0 , the tangent line seems to be horizontal.
2. (15 points)
(a) State the hypothesis of the Intermediate Value Theorem (IVT).

The theorem requires that the function f be continuous over an inteval $[a, b]$, and that M be a value of f between $f(a)$ and $f(b)$.
(b) State the conclusion of the Intermediate Value Theorem.

The conclusion is that there exists a number c such that $a<c<b$ and $f(c)=M$.
(c) Does the function $f(x)=\sqrt{x+3}$ satisfy the hypothesis of IVT over the interval $[1,13]$. If so, find a whole number M between $f(1)$ and $f(13)$, and then find a number c in the interval $(1,13)$ such that $f(c)=M$.

The only integer between $f(1)=\sqrt{1+3}=2$ and $f(13)=\sqrt{13+3}=4$ is 3 , so we need to solve the equation $f(c)=\sqrt{c+3}=3$. Squaring both sides yields $c+3=9$, and it follows that $c=6$.
3. (20 points) Let $f(x)=3 x^{2}+1$
(a) Compute the derivative f^{\prime} of f using the definition of derivative.

Compute $\frac{f(x+h)-f(x)}{h}$, simplify and eliminate the h in both numerator and denominator to get $\lim _{h \rightarrow 0} \frac{3\left(2 x h+h^{2}\right)}{h}=\lim _{h \rightarrow 0} 6 x+h=6 x$.
(b) What is the slope of the line tangent to the graph of f at the point $(1,4)$? $f^{\prime}(1)=6 \cdot 1=6$.
(c) Find an equation for the line tangent to the graph of f at the point $(1,4)$ $y-4=6(x-1)$ or $y=6 x-2$.
4. (30 points) Compute the following derivatives.
(a) Let $f(x)=x^{2}-1 / x$. Find $\frac{d}{d x} f(x)$.
$f^{\prime}(x)=2 x+\frac{1}{x^{2}}$.
(b) Let $g(x)=\sqrt{x^{2}+4}$. What is $g^{\prime}(x)$?
$g^{\prime}(x)=\frac{1}{2}\left(x^{2}+4\right)^{-\frac{1}{2}} \cdot 2 x=\frac{x}{\sqrt{x^{2}+4}}$.
(c) Find $\frac{d}{d x}(2 x+1)^{4} \cdot\left(4 x^{2}-1\right)$

$$
\begin{aligned}
& \frac{d}{d x}(2 x+1)^{4} \cdot\left(4 x^{2}-1\right)=(2 x+1)^{4}(8 x)+\left(4 x^{2}-1\right) \cdot 4(2 x+1)^{3} \cdot 2 \\
& =8 x(2 x+1)^{4}+8\left(4 x^{2}-1\right)(2 x+1)^{3} . \\
& \hline
\end{aligned}
$$

(d) Find $\frac{d}{d x} \frac{2 x+1}{x^{2}+2}$

$$
\frac{d}{d x} \frac{2 x+1}{x^{2}+2}=\frac{2\left(x^{2}+2\right)-2 x(2 x+1)}{\left(x^{2}+2\right)^{2}}=\frac{-2 x^{2}-2 x+4}{\left(x^{2}+2\right)^{2}} .
$$

(e) Find $\frac{d}{d t}\left(t^{-1}+t^{-2}\right)^{3}$.

$$
\frac{d}{d t}\left(t^{-1}+t^{-2}\right)^{3}=3\left(t^{-1}+t^{-2}\right)^{2}\left(-t^{-2}-2 t^{-3}\right) .
$$

5. (20 points) Let $C(x)=8000+200 x-0.1 x^{2}$, for $0 \leq x \leq 400$ be the cost in dollars of producing x air conditioners.
(a) Find the cost of producing the $301^{\text {st }}$ air conditioner. $C(301)-C(300)=139.9$
(b) Find the average cost function $\bar{C}(x) . \bar{C}(x)=\frac{8000+200 x-0.1 x^{2}}{x}$.
(c) Find the rate of change of the cost with respect to x when $x=300$. $C^{\prime}(x)=200-0.2 x$, so $C^{\prime}(300)=200-0.2(300)=200-60=140$.
