March 2, 2006
Name
The total number of points available is 138. Throughout this test, show your work.

1. (12 points) Let $f(x)=\sqrt{x^{3}-x+3}$.
(a) Compute $f^{\prime}(x)$

Solution: $f^{\prime}(x)=\frac{1}{2}\left(x^{3}-x+3\right)^{-1 / 2} \cdot 3 x^{2}-1=\frac{3 x^{2}-1}{2 \sqrt{x^{3}-x+3}}$.
(b) What is $f^{\prime}(2)$?

Solution: $f^{\prime}(2)=\frac{3 \cdot 2^{2}-1}{2 \sqrt{2^{3}-2+3}}=11 / 6$
(c) Use the information in (b) to find an equation for the line tangent to the graph of f at the point $(2, f(2))$.
Solution: Since $f(2)=3$, using the point-slope form leads to $y-3=$ $f^{\prime}(2)(x-2)=11(x-2) / 6$, so $y=11 x / 6-2 / 3$.
2. (12 points) Consider the function f defined by:

$$
f(x)= \begin{cases}3 x-x^{3} & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2 x^{2 / 3} & \text { if } x>1\end{cases}
$$

(a) Is f continuous at $x=1$?

Solution: No, the limits from the left and right are both 2 , but the value of f at 1 is 3 .
(b) What is the slope of the line tangent to the graph of f at the point $(8,8)$?

Solution: To find $f^{\prime}(8)$ first note that when x is near $8, f(x)=2 x^{2 / 3}$ so $f^{\prime}(x)=2 \frac{2}{3} x^{-1 / 3}$. Thus, $f^{\prime}(8)=2 \frac{2}{3} 8^{-1 / 3}=2 \frac{2}{3} \cdot \frac{1}{2}=\frac{2}{3}$.
(c) Find $f^{\prime}(-3)$

Solution: To find $f^{\prime}(-3)$, we must differentiate the part of f defined for $x<1$. In this area, $f^{\prime}(x)=3-3 x^{2}$, so $f^{\prime}(-3)=3-3(-3)^{2}=-24$.
3. (12 points) If a ball is thrown vertically upward from the roof of 112 foot building with a velocity of $48 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=112+$ $48 t-16 t^{2}$.
(a) What is the height the ball at time $t=0$?

Solution: $s(0)=112$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=0$ when the ball reaches its max height.
(c) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=48-32 t=0$ to get $t=3 / 2$ when the ball reaches its zenith. Thus, the max height is $s(3 / 2)=112+48(3 / 2)-16(3 / 2)^{2}=$ 148.
(d) What is the velocity of the ball when it hits the ground (height 0)?

Solution: Solve $s(t)=0$ using the quadratic formula to get $t=\frac{3 \pm \sqrt{9+28}}{2}=$ $\frac{3 \pm \sqrt{37}}{2}$, but the larger is only reasonable answer. Find $s^{\prime}((3+\sqrt{37}) / 2) \approx$ -97.3 feet/sec.
4. (7 points) The cost of producing x units of stuffed alligator toys is $C(x)=$ $0.003 x^{2}+6 x+6000$. Find the marginal cost at the production level of 1000 units.
Solution: $C^{\prime}(x)=\frac{d}{d x} 0.003 x^{2}+6 x+6000=0.006 x+6$ so $C^{\prime}(1000)=6+6=12$.
5. (30 points) Consider the table of values given for the functions f, f^{\prime}, g, and g^{\prime} :

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	1	6	2
1	4	6	2	5
2	6	4	3	4
3	1	2	5	3
4	3	5	2	6
5	5	3	4	1
6	0	3	2	4

(a) Let $L(x)=f(x) \cdot g(x)$. Compute $L^{\prime}(2)$.

Solution: $L^{\prime}(x)=\left(g^{\prime}(x) f(x)+f^{\prime}(x) g(x)\right)$, so $L^{\prime}(2)=\left(f(2) g^{\prime}(2)+\right.$ $\left.g(2) f^{\prime}(2)\right)=(6 \cdot 4+4 \cdot 3)=36$.
(b) Let $U(x)=g \circ g(x)$. Compute $U^{\prime}(1)$.

Solution: By the chain rule, $U^{\prime}(x)=g^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $U^{\prime}(1)=g^{\prime}(g(1))$. $g^{\prime}(1)=g^{\prime}(2) \cdot g^{\prime}(1)=4 \cdot 5=20$.
(c) Let $K(x)=g\left(x^{2}\right) \cdot f(x)$. Compute $K^{\prime}(1)$

Solution: $K^{\prime}(x)=g^{\prime}\left(x^{2}\right) \cdot 2 x \cdot f(x)+f^{\prime}(x) g\left(x^{2}\right)$, so $K^{\prime}(1)=g^{\prime}(1) \cdot 2$. $f(1)+f^{\prime}(1) g(1)=5 \cdot 2 \cdot 4+6 \cdot 2=52$.
(d) Let $V(x)=f(g(2 x))$. Compute $V^{\prime}(3)$.

Solution: Again, by the chain rule, $V^{\prime}(x)=f^{\prime}(g(2 x)) \cdot g^{\prime}(2 x) \cdot 2$, so $V^{\prime}(5)=f^{\prime}(g(6)) \cdot g^{\prime}(6) \cdot 2=f^{\prime}(2) \cdot g^{\prime}(6) \cdot 2=4 \cdot 4 \cdot 2=32$.
(e) Let $W(x)=[g(2 x-f(x))]^{2}$. Compute $W^{\prime}(4)$.

Solution: Again by the chain rule, $W^{\prime}(x)=2 g(2 x-f(x))^{1} \cdot g^{\prime}(2 x-$ $f(x)) \cdot\left(2-f^{\prime}(x)\right)$, so $W^{\prime}(4)=2 g(8-f(4)) \cdot g^{\prime}(8-f(4)) \cdot\left(2-f^{\prime}(4)\right)=$ $2 g(5) \cdot g^{\prime}(5) \cdot\left(2-f^{\prime}(4)\right)=2 \cdot 4 \cdot 1(2-5)=-24$.
(f) Let $Z(x)=g\left(x^{2}+f(x)\right)$. Compute $Z^{\prime}(1)$.

Solution: Again by the chain rule and the product rule, $Z^{\prime}(x)=g^{\prime}\left(x^{2}+\right.$ $f(x)) \cdot \frac{d}{d x}\left(x^{2}+f(x)\right)=g^{\prime}\left(x^{2}+f(x)\right) \cdot\left(2 x+f^{\prime}(x)\right)$, so $Z^{\prime}(3)=g^{\prime}(1+f(1))$. $\left(2+f^{\prime}(1)\right)=g^{\prime}(5) \cdot(2+6)=1 \cdot 8=8$.
6. (25 points) Compute the following derivatives.
(a) Let $f(x)=\left(x+\sqrt{1+x^{3}}\right)^{2}$. Find $\frac{d}{d x} f(x)$.

Solution: Note that $\sqrt{x^{3}}=x^{3 / 2}$, so we differentiate it using the power rule and chain rule: $f^{\prime}(x)=2\left(x+\sqrt{1+x^{3}}\right) \cdot\left(1+\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2} \cdot 3 x^{2}\right)$.
(b) Let $g(x)=x^{3} /\left(1+x^{2}\right)$. What is $g^{\prime}(x)$?

Solution: Use the quotient rule to get $g^{\prime}(x)=3 x^{2}\left(1+x^{2}\right)-2 x\left(x^{3}\right) \div$ $\left(1+x^{2}\right)^{2}=\frac{x^{4}+3 x^{2}}{\left(1+x^{2}\right)^{2}}$.
(c) Find $\frac{d}{d x}\left((x+2)^{2} \cdot(2 x-1)\right)$.

Solution: By the product rule, $\frac{d}{d x}\left((x+2)^{2} \cdot\left(2 x^{3}-1\right)\right)=2(x+2) \cdot(2 x-$ $1)+2(x+2)^{2}=2(x+2)(3 x+1)$.
(d) Find $\frac{d}{d x} \sqrt{\frac{2 x^{3}+1}{3 x-2}}$.

Solution: By the chain and quotient rules, $\frac{d}{d x} \frac{2 x^{3}+1}{x-2}=\frac{1}{2}\left(\frac{2 x^{3}+1}{3 x-2}\right)^{-1 / 2}$. $\frac{6 x^{2}(3 x-2)-3\left(2 x^{3}+1\right)}{(3 x-2)^{2}}$.
(e) Find $\frac{d}{d t}\left(t^{2}+1 / t^{2}\right)^{4}$.

Solution: By the chain rule, $\frac{d}{d t}\left(t^{3}+1 / t\right)^{4}=4\left(t^{3}+1 / t\right)^{3} \cdot\left(3 t^{2}-t^{-2}\right)$.
7. (40 points) Consider the rational function

$$
r(x)=\frac{\left(x^{2}-4\right)(2 x+1)}{\left(3 x^{2}-3\right)(x-2)} .
$$

Use the Test Interval Technique to solve the inequality $r(x) \geq 0$.
Solution: Notice first that f is not in factored form. Factoring reveals that the numerator and denominator have common factors. Thus

$$
r(x)=\frac{(x-2)(x+2)(2 x+1)}{3(x-1)(x+1)(x-2)}
$$

We can cancel the common factors with the understanding that we are (very slightly) enlarging the domain of $r: r(x)=\frac{(x+2)(2 x+1)}{3(x-1)(x+1)}$. Next find the branch points. These are the points at which f can change signs. Precisely, they are the zeros of the numerator and of the denominator. They are $-2,-1 / 2,1,-1$. Again we select test points and find the sign of f at of these points to get the sign chart.

Again suppose that we are solving $f(x) \geq 0$ The solution to $f(x)>0$ is easy. It is the union of the open intervals with the + signs, $(-\infty,-2) \cup(-1,-1 / 2) \cup$ $(1, \infty)$. It remains to solve $f(x)=0$ and attach these solutions to what we have. The zeros of f are -2 and $-1 / 2$. So the solution to $f(x) \geq 0$ is $(-\infty,-2] \cup(-1,-1 / 2] \cup(1, \infty)$. Notice that the branch points 1 and -1 are not included since f is not defined at these two points. It has vertical asymptotes at these two places. Technically the value $x=2$ should not be included in the solution because the function f as originally defined is not defined at $x=2$. Thus, the exact answer is $(-\infty,-2] \cup(-1,-1 / 2] \cup$ $(1,2) \cup(2, \infty)$.

