February 6, 2013 Name
The problems count as marked. The total number of points available is 149. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (30 points) Let L denote the line defined by the equation $2 y+3 x=12$.
(a) Select a point P that belongs to the line. There are infinitely many correct answers to this.
Solution: One point is $P=(2,3)$ since $2 \cdot 3+3 \cdot 2=12$.
(b) Find an equation for the line perpendicular to L that goes through the point you selected.
Solution: The line must have slope $2 / 3$ since L has slope $-3 / 2$. Thus, using point-slope form, we have $y-3=(2 / 3)(x-2)$ or $y=2 x / 3+5 / 3$ in slope-intercept form.
(c) Find the distance between your point P and the origin $(0,0)$.

Solution: $D=\sqrt{(3-0)^{2}+(2-0)^{2}}=\sqrt{13}$.
(d) Find the midpoint of the line segment with endpoints P and $(0,0)$.

Solution: The midpoint is $\left(\frac{0+2}{2}, \frac{0+3}{2}\right)=(1,3 / 2)$.
2. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3\right)^{2}}{(x-1)^{4}}$

Solution: The degree of both the numerator and the denominator is 4, so the limit is $4 / 1=4$.
(b) $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}$

Solution: Factor the denominator to get $\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(x+4)}=\lim _{x \rightarrow 4} \frac{1}{(x+4)}=$ $\frac{1}{8}$
(c) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}$.

Solution: Expand the numerator to get

$$
\lim _{h \rightarrow 0} \frac{16+8 h+h^{2}-16}{h}=\lim _{h \rightarrow 0} \frac{8 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(8+h)}{h}
$$

$=\lim _{h \rightarrow 0}(8+h)$, and now the zero over zero problem has disappeared. So the limit is 8 .
(d) $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x^{2}-3 x+2}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x+4}{x-2}=-5
$$

(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{4 x}-\frac{1}{8}}{\frac{1}{2 x}-\frac{1}{4}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must either factor or do the fractional arithmetic. Factoring seems to work best. The limit becomes

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{2}\left[\frac{1}{2 x}-\frac{1}{4}\right]}{\left[\frac{1}{2 x}-\frac{1}{4}\right]}=\lim _{x \rightarrow 2}=\frac{1}{2} .
$$

(f) $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{x-5}$

Solution: Rationalize the numerator to get

$$
\lim _{x \rightarrow 2} \frac{(\sqrt{3 x+1}-4)(\sqrt{3 x+1}+4)}{(x-5)(\sqrt{3 x+1}+4)}=\frac{3(x-5)}{(x-5)(\sqrt{3 x+1}+4)} \rightarrow \frac{3}{4+4}=\frac{3}{8}
$$

3. (12 points) Consider the function g defined symbolically by

$$
g(x)=\sqrt{(x+3)(2 x-1)(x-5)}
$$

Note that $g(0)=\sqrt{15}$, so 0 belongs to the domain of g. Find the domain of the function. Express your answer as a union of intervals. That is, use interval notation.

Solution: The function is defined for those x for which $(x+3)(2 x-1)(x-5) \geq$ 0 , so build the sign chart for $(x+3)(2 x-1)(x-5)$ to see that it is at least zero on $[-3,1 / 2] \cup[5, \infty)$.
4. (12 points) Let $H(x)=\left(x^{2}-1\right)^{2}(x+2)^{2}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-1\right) \cdot 2 x(x+2)^{2}+2(x+2)\left(x^{2}-1\right)^{2} .
$$

Please note that the derivative has already been found for you. There is no need to differentiate. Find all of the zeros of $H^{\prime}(x)$. This is not a calculus problem. It's an algebra problem.
Solution: Factor out the common terms to get $H^{\prime}(x)=2\left(x^{2}-1\right)(x+2)[2 x(x+$ $\left.2)+\left(x^{2}-1\right)\right]$. One factor is $2 x^{2}-4 x+x^{2}-1=3 x^{2}+4 x-1$. Apply the quadratic formula to get $x=\frac{-4 \pm \sqrt{16+4(3)}}{6}$ which reduces to $x=\frac{-2 \pm \sqrt{7}}{3}$. The other 3 zeros of H^{\prime} are $x= \pm 1$ and $x=-2$.
5. (10 points) The demand curve for a new phone is given by $3 p+2 x=12$ where p is the price in hundreds of dollars and x is the number demanded in millions. The supply curve is given by $x-p^{2}+4 p=4$. Find the point of equilibrium.
Solution: Since $x=-3 p / 2+6$ and $x=p^{2}-4 p+4$, we can solve $-3 p / 2+6=$ $p^{2}-4 p+4$ for $p: p^{2}-4 p+3 p / 2+4-6=0$, so $2 p^{2}-5 p-4=0$, which can be solved by the quadratic formula. We get $p=\frac{5}{4} \pm \frac{\sqrt{57}}{4}$. Taking the positive one of these ≈ 3.137) and solving for x yields $x \approx 4.294$.
6. (10 points) Find the exact value of $|2 \sqrt{2}-7|+|1-6 \sqrt{2}|-|3 \sqrt{2}-11|$.

Solution: Using the definition of absolute value, we have $7-2 \sqrt{2}+6 \sqrt{2}-$ $1-(11-3 \sqrt{2})=7-1-11-2 \sqrt{2}+6 \sqrt{2}+3 \sqrt{2}=-5+7 \sqrt{2}$.
7. (15 points) Let

$$
f(x)= \begin{cases}|x-2| & \text { if } x<-1 \\ 2 x+5 & \text { if }-1 \leq x \leq 1 \\ x-2 & \text { if } 1<x \leq 3 \\ x^{2}-8 & \text { if } 3<x\end{cases}
$$

(a) What is $f(-1)$?

Solution: $f(-1)=3$.
(b) What is $f(1)$?

Solution: $f(1)=7$.
(c) What is $f(3)$?

Solution: $f(3)=1$.
(d) What is $\lim _{x \rightarrow-1^{-}} f(x)$?

Solution: $\lim _{x \rightarrow-1^{-}} f(x)=|-3|=3$
(e) What is $\lim _{x \rightarrow 1^{+}} f(x)$?

Solution: $\lim _{x \rightarrow 1^{+}} f(x)=-1$
(f) What is $\lim _{x \rightarrow 3} f(x)$?

Solution: $\lim _{x \rightarrow 2} f(x)=1$.
(g) List the x-values between -2 and 4 for which f is not continuous.

Solution: The function is discontinuous only at $x=1$.
8. (25 points) Let $f(x)=\frac{1}{2 x+1}$. Notice that $f(0)=1$.
(a) Find the slope of the line joining the two points $(0, f(0))$ and $(1, f(1))$.

Solution: The slope is $\frac{f(1)-f(0)}{1-0}=\frac{\frac{1}{3}-1}{1}=-2 / 3$.
(b) Let h be a positive number. What is the slope of the line passing through the points $(0, f(0)$ and $(0+h, f(0+h))$. Your answer depends on h, of course.
Solution: $\frac{f(0+h)-f(0)}{h}=\frac{\frac{1}{2 h+1}-1}{h}$.
(c) Compute $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ to get $f^{\prime}(0)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the denominator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{2 h+1}-\frac{2 h+1}{2 h+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{h(2 h+1)} \\
& =-2
\end{aligned}
$$

So, $f^{\prime}(4)=1 / 3$.
(d) Your answer to (c) is the slope of the line tangent to the graph of f at the point $(0, f(0))$. In other words, your answer is $f^{\prime}(0)$. Write an equation for that tangent line.
Solution: So $f^{\prime}(0)=-2$. The line is $y-1=-2(x-0)$, or $y=-2 x+1$.

