February 6, 2013
 Name

The problems count as marked. The total number of points available is 149. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (30 points) Let L denote the line defined by the equation $2 y+3 x=12$.
(a) Select a point P that belongs to the line. There are infinitely many correct answers to this.
(b) Find an equation for the line perpendicular to L that goes through the point you selected.
(c) Find the distance between your point P and the origin $(0,0)$.
(d) Find the midpoint of the line segment with endpoints P and $(0,0)$.
2. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3\right)^{2}}{(x-1)^{4}}$
(b) $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}$
(c) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}$.
(d) $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x^{2}-3 x+2}$
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{4 x}-\frac{1}{8}}{\frac{1}{2 x}-\frac{1}{4}}$
(f) $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{x-5}$
3. (12 points) Consider the function g defined symbolically by

$$
g(x)=\sqrt{(x+3)(2 x-1)(x-5)} .
$$

Note that $g(0)=\sqrt{15}$, so 0 belongs to the domain of g. Find the domain of the function. Express your answer as a union of intervals. That is, use interval notation.
4. (12 points) Let $H(x)=\left(x^{2}-1\right)^{2}(x+2)^{2}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-1\right) \cdot 2 x(x+2)^{2}+2(x+2)\left(x^{2}-1\right)^{2} .
$$

Please note that the derivative has already been found for you. There is no need to differentiate. Find all of the zeros of $H^{\prime}(x)$. This is not a calculus problem. It's an algebra problem.
5. (10 points) The demand curve for a new phone is given by $3 p+2 x=12$ where p is the price in hundreds of dollars and x is the number demanded in millions. The supply curve is given by $x-p^{2}+4 p=4$. Find the point of equilibrium.
6. (10 points) Find the exact value of $|2 \sqrt{2}-7|+|1-6 \sqrt{2}|-|3 \sqrt{2}-11|$.
7. (15 points) Let

$$
f(x)= \begin{cases}|x-2| & \text { if } x<-1 \\ 2 x+5 & \text { if }-1 \leq x \leq 1 \\ x-2 & \text { if } 1<x \leq 3 \\ x^{2}-8 & \text { if } 3<x\end{cases}
$$

(a) What is $f(-1)$?
(b) What is $f(1)$?
(c) What is $f(3)$?
(d) What is $\lim _{x \rightarrow-1^{-}} f(x)$?
(e) What is $\lim _{x \rightarrow 1^{+}} f(x)$?
(f) What is $\lim _{x \rightarrow 3} f(x)$?
(g) List the x-values between -2 and 4 for which f is not continuous.
8. (25 points) Let $f(x)=\frac{1}{2 x+1}$. Notice that $f(0)=1$.
(a) Find the slope of the line joining the two points $(0, f(0))$ and $(1, f(1))$.
(b) Let h be a positive number. What is the slope of the line passing through the points $(0, f(0)$ and $(0+h, f(0+h))$. Your answer depends on h, of course.
(c) Compute $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ to get $f^{\prime}(0)$.
(d) Your answer to (c) is the slope of the line tangent to the graph of f at the point $(0, f(0))$. In other words, your answer is $f^{\prime}(0)$. Write an equation for that tangent line.

