October 2, $2012 \quad$ Name
The problems count as marked. The total number of points available is 169. Throughout this test, show your work.

1. (10 points) Find the exact value of $|5 \sqrt{2}-7|+|1-4 \sqrt{2}|-|9 \sqrt{2}-11|$.

Solution: $|5 \sqrt{2}-7|+|1-4 \sqrt{2}|-|9 \sqrt{2}-11|=(5 \sqrt{2}-7)+(4 \sqrt{2}-1)-$ $(9 \sqrt{2}-11)=3$.
2. (10 points) The points $(2, k)$ and $(5,5)$ belong to the line perpendicular to the line $6 x-2 y=7$. Find the value of k.
Solution: The given line has slope 3 so the one perpendicular has slope $-1 / 3$.
Hence $\frac{k-5}{2-5}=-1 / 3$. Solving, we get $k=6$.
3. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{6}+x^{4}-6}{\left(11-3 x^{3}\right)^{2}}$

Solution: The degree of both the numerator and the denominator is 6 , so the limit is limit is $3 / 9=1 / 3$.
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{4}-16}$

Solution: Factor the denominator to get $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\left(x^{2}-4\right)\left(x^{2}+4\right)}=\lim _{x \rightarrow 2} \frac{1}{\left(x^{2}+4\right)}=$ $\lim _{x \rightarrow 2} \frac{1}{8}=1 / 8$
(c) $\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h}$.

Solution: Expand the numerator to get

$$
\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h}
$$

$=\lim _{h \rightarrow 0}(2+h)$, and now the zero over zero problem has disappeared. So the limit is 2 .
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+x-2}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x-3}{x+2}=-2 / 3
$$

(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{\frac{1}{2 x}-\frac{1}{4}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must either factor or do the fractional arithmetic. Factoring seems to work best. The limit becomes

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{3}\left[\frac{1}{x}-\frac{1}{2}\right]}{\frac{1}{2}\left[\frac{1}{x}-\frac{1}{2}\right]}=\lim _{x \rightarrow 2} \frac{1}{3} \cdot \frac{2}{1}=\frac{2}{3} .
$$

(f) $\lim _{x \rightarrow-\infty} \frac{\sqrt{36 x^{2}-3 x}}{9 x-11}$

Solution: Divide both numerator and denominator by x to get $\lim _{x \rightarrow-\infty} \frac{-\sqrt{36-3 / x}}{9-11 / x}=$ $6 / 9=-2 / 3$ because the degree of the denominator is essentially the same as that of the numerator.
(g) $\lim _{x \rightarrow 2} \frac{\sqrt{8 x}-4}{x-2}$

Solution: Rationalize the numerator to get

$$
\lim _{x \rightarrow 2} \frac{8 x-16}{x-2} \frac{1}{\sqrt{8 x}+4}=8 \cdot \frac{1}{8}=1
$$

4. (30 points) A topless box is constructed from a rectangular piece of cardboard that measures 16 inches by 12 inches. An x by x square is cut from each of the four corners, and the sides are then folded upwards to build the box.
(a) Express the volume V as a function of x.

Solution: $V(x)=x(16-2 x)(12-2 x)$
(b) Use the physical constraints to find the domain of V.

Solution: $0 \leq x \leq 6$.
(c) Evaluate V at the $x=1, x=2$, and $x=3$.

Solution: $V(1)=1 \cdot 14 \cdot 10=140, V(2)=2 \cdot 12 \cdot 8=192$, and $V(3)=3 \cdot 10 \cdot 6=180$.
(d) Find the derivative of V and use it to find the places where the tangent line is horizontal.
Solution: Rewrite $V(x)$ as $V(x)=\left(16 x-2 x^{2}\right)(12-2 x)$ and use the product rule to get $V^{\prime}(x)=$

$$
\begin{array}{r}
\left.(16-4 x)(12-2 x)+16 x-2 x^{2}\right)(-2)= \\
8 x^{2}-80 x+12 \cdot 16+4 x^{2}-32 x= \\
12 x^{2}-112 x+12 \cdot 16= \\
4\left(3 x^{2}-28 x+48\right)
\end{array}
$$

Alternatively, $V(x)=4 x^{3}-56 x^{2}+192 x$, so $V^{\prime}(x)=12 x^{2}-112 x+192=$ $4\left(3 x^{2}-28 x+48\right)$.
(e) Find the critical points of V (ie, the places where the tangent line is horizontal) and pick out the one that belongs to the domain of V. Estimate this critical point to the nearest tenth of a unit. Estimate the value of V at that point.
Solution: Using the quadratic formula,

$$
x=\frac{28 \pm \sqrt{28^{2}-4 \cdot 3 \cdot 48}}{6} .
$$

The value in the domain is $x \approx 2.26$. And $V(2.26) \approx 194.07$
5. (12 points) Find the domain of the function

$$
g(x)=\sqrt{x(x+1)(x-1)(x-3)}
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: The function is defined for those x for which $x(x+1)(x-1)(x-3) \geq$ 0 , that is $(-\infty,-1] \cup[0,1] \cup[3, \infty)$.
6. (12 points) Let $H(x)=\left(x^{2}-4\right)^{2}(x-3)^{2}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-4\right) \cdot 2 x(x-3)^{2}+\left(x^{2}-4\right)^{2} \cdot 2(x-3) .
$$

Three of the zeros of $H^{\prime}(x)$ are $x= \pm 2$ and $x=3$. Find the other two.
Solution: Factor out the common terms to get $H^{\prime}(x)=2\left(x^{2}-4\right)(x-3)[2 x(x-$ $\left.3)+\left(x^{2}-4\right)\right]$. One factor is $2 x^{2}-6 x+x^{2}-4=3 x^{2}-6 x-4$. Apply the quadratic formula to get $x=\frac{6 \pm \sqrt{36+4 \cdot 4(3)}}{6}$ which reduces to $x=1 \pm \frac{\sqrt{21}}{3}$.
7. (10 points) The demand curve for a new phone is given by $3 p+2 x=18$ where p is the price in hundreds of dollars and x is the number demanded in millions. The supply curve is given by $x-p^{2}+4 p=3$. Find the point of equilibrium.
Solution: Since $x=-3 p / 2+9$ and $x=p^{2}-4 p+3$, we can solve $-3 p / 2+9=$ $p^{2}-4 p+3$ for $p: p^{2}-4 p+3 p / 2+3-9=0$, so $p^{2}-5 p / 2-6=0$, so $2 p^{2}-5 p-12=0$, which can be solved by factoring. $(2 p+3)(p-4)=0$, which has $p=4$ and therefore $x=3$ as a solution.
8. (10 points) Suppose $p(x)$ is a polynomial of degree 5 and $q(x)$ is a polynomial of degree 6. What is the degree of the polynomial $H(x)=\left(x^{2} p(x)-1\right)^{2}-$ $\left(q(x)+x^{2}\right)^{2}+x^{13}$? Write a sentence about your reasoning.
Solution: We can reason as follows: $H(x)$ is the sum of three polynomials $\left(x^{2} p(x)-1\right)^{2},-\left(q(x)+x^{2}\right)^{2}$ and x^{13}, and their degrees are, respectively 14,12 and 13, so H has degree 14 .
9. (15 points) Let

$$
f(x)= \begin{cases}|x-3| & \text { if } x<2 \\ 1 & \text { if } x=2 \\ x-2 & \text { if } 2<x \leq 4 \\ x^{2}-14 & \text { if } 4<x\end{cases}
$$

(a) What is $\lim _{x \rightarrow 2^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 2^{-}} f(x)=1$
(b) What is $\lim _{x \rightarrow 2^{+}} f(x)$?

Solution: $\lim _{x \rightarrow 2^{+}} f(x)=0$
(c) What is $\lim _{x \rightarrow 2} f(x)$?

Solution: $\lim _{x \rightarrow 2} f(x)$ does not exist.
(d) What is $\lim _{x \rightarrow 4^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 4^{-}} f(x)=2$
(e) What is $\lim _{x \rightarrow 4^{+}} f(x)$?

Solution: $\lim _{x \rightarrow 4^{+}} f(x)=2$
(f) What is $\lim _{x \rightarrow 4} f(x)$?

Solution: $\lim _{x \rightarrow 4} f(x)=2$
(g) What is $f(2)$?

Solution: $f(2)=1$.
(h) What is $f(4)$?

Solution: $f(4)=2$.
10. (25 points) Let $f(x)=\sqrt{2 x+1}$. Notice that $f(4)=\sqrt{2 \cdot 4+1}=3$.
(a) Find the slope of the line joining the two points $(4, f(4))$ and $(5, f(5))$.

Solution: The slope is $\frac{f(5)-f(4)}{5-4}=\frac{\sqrt{11}-3}{1} \approx 0.317$.
(b) Let h be a positive number. What is the slope of the line passing through the points $(4, f(4)$ and $(4+h, f(4+h)$. Your answer depends on h, of course.
Solution: $\frac{f(4+h)-f(4)}{h}=\frac{\sqrt{2(4+h)+1}-\sqrt{2 \cdot 4+1}}{h}$.
(c) Compute $\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}$ to get $f^{\prime}(4)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the numerator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{2(4+h)+1}-\sqrt{2 \cdot 4+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2(4+h)+1}-\sqrt{9}}{h} \cdot \frac{\sqrt{8+2 h+1}+3}{\sqrt{8+2 h+1}+3} \\
& =\lim _{h \rightarrow 0} \frac{9+2 h-9}{h(\sqrt{2(4+h)+1}+3)} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2(4+h)+1}+3)} \\
& =\lim _{h \rightarrow 0} \frac{2}{(\sqrt{2(4+h)+1}+3)} \\
& =\frac{2}{2(3)} \\
& =\frac{1}{3}
\end{aligned}
$$

So, $f^{\prime}(4)=1 / 3$.
(d) Your answer to (c) is the slope of the line tangent to the graph of f at the point $(4, f(4))$. In other words, your answer is $f^{\prime}(4)$. Write and equation for the tangent line.
Solution: The line is $y-3=\frac{1}{3}(x-4)$, or $y=x / 3+5 / 3$.

