October 4, $2011 \quad$ Name
The problems count as marked. The total number of points available is 151. Throughout this test, show your work.

1. (10 points) What is the exact value of $|8-2 \pi|+|2 \pi-7|$. A solution that fails to show your understanding of the definition of absolute value is worth at most 1 point.
2. (12 points)
(a) For what value of k does the line $2 y+k x=6$ go through the point $(1,4)$?
(b) Find the slope-intercept form of the line perpendicular to the line in (a) that includes the point $(1,4)$.
3. (15 points) Find the domain and range of each of the three functions below. Express your answers using interval notation. Use the letters D and R for domain and range, respectively.
(a) $h(x)=\frac{x^{2}-1}{x-1}$.
(b) $g(x)=\frac{\sqrt{2-x}}{x+4}$
(c) $f(x)= \begin{cases}x-3 & \text { if } x<2 \\ x+2 & \text { if } x>2\end{cases}$
4. (52 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{3}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
(c) $\lim _{x \rightarrow 1} \frac{(x-2)^{3}+1}{x-1}$.
(d) $\lim _{x \rightarrow-2} \frac{x^{2}+2 x}{x^{2}+5 x+6}$
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{4 x}-\frac{1}{8}}{\frac{1}{2 x}-\frac{1}{4}}$
(f) $\lim _{x \rightarrow 8} \frac{\sqrt{x+1}-3}{x-8}$

For problems (g) through (m), let

$$
f(x)=\left\{\begin{array}{cl}
-2 & \text { if } x<0 \\
2 x^{2}-2 & \text { if } 0 \leq x<2 \\
3 & \text { if } x=2 \\
10-3 x & \text { if } x>2
\end{array}\right.
$$

(g) $\lim _{x \rightarrow 2^{-}} f(x)$
(h) $\lim _{x \rightarrow 2^{+}} f(x)$
(i) $\lim _{x \rightarrow 2} f(x)$
(j) $\lim _{x \rightarrow-1} f(x)$
(k) $\lim _{x \rightarrow 3} f(x)$
(1) $\lim _{x \rightarrow 0} f(x)$
(m) Tell whether the function is continuous at each of the points:
i. $x=0$
ii. $x=1$
iii. $x=2$
iv. $x=3$
5. (12 points) Let $H(x)=\left(x^{2}-1\right)(x+2)^{3}$. Using the product rule,

$$
H^{\prime}(x)=(2 x) \cdot(x+2)^{3}+3\left(x^{2}-1\right) \cdot(x+2)^{2} .
$$

Find the three zeros of $H^{\prime}(x)$.
6. (12 points) Let $f(x)=2 x-\frac{1}{x}$ and let $g(x)=x^{2}-2$. Compute the composite functions listed below.
(a) $f \circ g(x)$
(b) $g \circ f(x)$
(c) $f \circ f(x)$
(d) $g \circ g(x)$
7. (20 points) Let $f(x)=\frac{1}{x+1}$. Note that $f(0)=1$.
(a) Find the slope of the line joining the points $(0,1)$ and $(0+h, f(0+h))=$ $(h, f(h))$, where $h \neq 0$. Then find the limit as h approaches 0 to get $f^{\prime}(0)$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .
(c) Replace the x with 0 in your answer to (b) to find $f^{\prime}(0)$.
(d) Use the information given and that found in (c) to find an equation in slope-intercept form for the line tangent to the graph of f at the point $(0,1)$.
8. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=128+$ $64 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?
(b) What is the velocity of the ball at the time it reaches its maximum height?
(c) What is the maximum height the ball reaches?
(d) After how many seconds is the ball exactly 160 feet above the ground?
(e) How fast is the ball going the first time it reaches the height 160 ?
(f) How fast is the ball going the second time it reaches the height 160 ?

