February 16, $2011 \quad$ Name
The problems count as marked. The total number of points available is 155. Throughout this test, show your work.

1. (10 points) The points $(2,6)$ and $(5,3)$ belong a line L. Find an equation for the line perpendicular to L and passing through the point $(1,1)$.

Solution: The line L has slope -1 so the one perpendicular has slope 1 . Hence the line in question is $y-1=1(x-1)$ or $y=x$.
2. (10 points) Find the exact value of $|2 \pi-\sqrt{5}-3 \sqrt{2}|+2 \pi$. A decimal approximation is worth 1 point. Your answer may use radicals or symbol π.
Solution: Since $2 \pi-\sqrt{5}-3 \sqrt{2}$ is a negative number, $|2 \pi-\sqrt{5}-3 \sqrt{2}|=$ $-(2 \pi-\sqrt{5}-3 \sqrt{2})=\sqrt{5}+3 \sqrt{2}-2 \pi$. Adding 2π gives us $\sqrt{5}+3 \sqrt{2}$.
3. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{2}}$

Solution: The degrees of the numerator is 4 while the degree of the denominator is 4 , so the limit is $3 / 9=1 / 3$.
(b) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}=$
$\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{\left(x^{2}-1\right)}=\lim _{x \rightarrow 1} \frac{x^{2}+1}{1}=2$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x^{2}+4 x+3}$

Solution: Factor and eliminate the $x+3$ from numerator and denominator to get

$$
\lim _{x \rightarrow-3} \frac{x-1}{x+1}=-4 /-2=2
$$

(d) $\lim _{x \rightarrow 2} \frac{\frac{1}{4 x}-\frac{1}{8}}{\frac{1}{3 x}-\frac{1}{6}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must either factor or do the fractional arithmetic. Factoring seems to work best. The limit becomes

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{4}\left[\frac{1}{x}-\frac{1}{2}\right]}{\frac{1}{3}\left[\frac{1}{x}-\frac{1}{2}\right]}=\lim _{x \rightarrow 2} \frac{1}{4} \cdot \frac{3}{1}=\frac{3}{4} .
$$

(e) $\lim _{x \rightarrow-\infty} \frac{\left|x^{3}\right|}{x^{3}-x^{2}+x-1}$

Solution: Divide both numerator and denominator by x^{3} to get $\lim _{x \rightarrow-\infty} \frac{\left|x^{3}\right| / x^{3}}{1-1 / x+1 / x^{2}-1 / x^{3}}$, which approaches -1 as $x \rightarrow-\infty$.
(f) $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{8 x}-4}$

Solution: Rationalize the denominator to get

$$
\lim _{x \rightarrow 2} \frac{x-2}{8 x-16}(\sqrt{8 x}+4)=\frac{1}{8} \cdot 8=1
$$

4. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x(8-x)}}{(x+1)(x-3)} .
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: The numerator is defined for $0 \leq x \leq 8$, that is $[0,8]$. The denominator is zero at $x=-1$ and at $x=3$, so 3 must be removed from $[0,8]$. Thus, the domain is $[0,3) \cup(3,8]$.
5. (12 points) Let $H(x)=\left(x^{2}-1\right)^{2}(5 x+7)+\left(x^{2}-1\right)(5 x+7)^{2}$. H is a polynomial of degree 5 , and it has 5 zeros. Find all the zeros of H.
Solution: Factor out the common terms to get $H(x)=\left(x^{2}-1\right)(5 x+7)\left[x^{2}-\right.$ $1+5 x+7]$. The zeros of $x^{2}-1$ are $x= \pm 1$ and the zero of $5 x+7$ is $x=-7 / 5$. The quadratic $x^{2}+5 x+6$ factors into $(x+3)(x+2)$, so its two zeros are $x=-3$ and $x=-2$.
6. (10 points) Suppose $p(x)$ is a polynomial of degree 4 and $q(x)$ is a polynomial of degree 3. What is the degree of the polynomial $H(x)=\left(x^{2} p(x)-1\right)^{2}-$ $\left(q(x)+x^{2}\right)^{2}+x^{8}$? Write a sentence about your reasoning.
Solution: We can reason as follows: $H(x)$ is the sum of three polynomials $\left(x^{2} p(x)-1\right)^{2},-\left(q(x)+x^{2}\right)^{2}$ and x^{8}, and their degrees are, respectively 12,6 and 8 , so H has degree 12 .
7. (16 points) Let

$$
f(x)= \begin{cases}|x-3| & \text { if } x<2 \\ 5 & \text { if } x=2 \\ (4-x)^{2} & \text { if } x>2\end{cases}
$$

(a) What is $\lim _{x \rightarrow 2^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}|x-3|=1$.
(b) What is $\lim _{x \rightarrow 2^{+}} f(x)$?

Solution: For the limit to exist, the limit from the right must be 1, so $t=1$ and $t=3$ both work.
(c) Is f continuous at $x=2$?

Solution: No. The limit does not exist.
(d) What is $\lim _{x \rightarrow 1^{-}} f(x)$?

Solution: f is continuous at all x except 2, so $\lim _{x \rightarrow 1^{-}} f(x)=|1-3|=2$.
8. (20 points) Let $f(x)=x^{2}-2 x$. Note that $f(3)=3$
(a) Find the slope of the line joining the points $(3,3)$ and $(3+h, f(3+h))$, where $h \neq 0$. Note that $(3+h, f(3+h))$ is a point on the graph of f.
Solution: The slope is $\frac{f(3+h)-f(3)}{3+h-3}=\frac{(3+h)^{2}-2(3+h)-3}{h}$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-2(x+h)-\left(x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-2 x-2 h-x^{2}+2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-2)}{h}=2 x-2 .
\end{aligned}
$$

(c) Replace the x with 3 in your answer to (b) to find $f^{\prime}(3)$.

Solution: $f^{\prime}(3)=4$
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(3,3)$.
Solution: The line is $y-3=4(x-3)$, or $y=4 x-9$.
9. (20 points) For each condition listed, express in interval notation the set of all numbers that satisfy the condition. For example $1 \leq 2 x-3<7$ has solution the interval $[2,5)$.
(a) $x^{2} \neq 9$

Solution: You get $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$ when you 'pluck' out the numbers 3 and -3 from the number line.
(b) $x^{2} \geq 4$

Solution: $(-\infty,-2] \cup[2, \infty)$
(c) $(x-2)(x+3) \leq 0$

Solution: Use the test interval technique to get $[-3,2]$
(d) $|2 x+3| \geq 9$

Solution: The inequality is equivalent to $2 x+3 \geq 9$ or $2 x+3 \leq-9$. This is the same as $2 x \geq 6$ or $2 x \leq-12$, so we have $(-\infty,-6] \cup[3, \infty)$
10. (15 points) Recall that the Intermediate Value Theorem guarantees that for any function f continuous over the interval $[a, b]$ and for any number M between $f(a)$ and $f(b)$, there exists a number c such that $f(c)=M$. The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
Solution: Suppose you picked $b=2$. Then $f(a)=1 / 2$ and $f(b)=2 / 3$. You could choose $M=3 / 5$ between them.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.
Solution: To solve $f(c)=3 / 5$, write $\frac{1}{1+\frac{1}{x}}=3 / 5$, from which we get $5=3+3 / x$ and then $3 / x=2$, so $x=3 / 2$. Indeed $3 / 2$ is between 1 and 2 , as required.

