February 16, $2011 \quad$ Name
The problems count as marked. The total number of points available is 155 . Throughout this test, show your work.

1. (10 points) The points $(2,6)$ and $(5,3)$ belong a line L. Find an equation for the line perpendicular to L and passing through the point $(1,1)$.
2. (10 points) Find the exact value of $|2 \pi-\sqrt{5}-3 \sqrt{2}|+2 \pi$. A decimal approximation is worth 1 point. Your answer may use radicals or symbol π.
3. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{2}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}+2 x-3}{x^{2}+4 x+3}$
(d) $\lim _{x \rightarrow 2} \frac{\frac{1}{4 x}-\frac{1}{8}}{\frac{1}{3 x}-\frac{1}{6}}$
(e) $\lim _{x \rightarrow-\infty} \frac{\left|x^{3}\right|}{x^{3}-x^{2}+x-1}$
(f) $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{8 x}-4}$
4. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x(8-x)}}{(x+1)(x-3)}
$$

Express your answer as a union of intervals. That is, use interval notation.
5. (12 points) Let $H(x)=\left(x^{2}-1\right)^{2}(5 x+7)+\left(x^{2}-1\right)(5 x+7)^{2}$. H is a polynomial of degree 5 , and it has 5 zeros. Find all the zeros of H.
6. (10 points) Suppose $p(x)$ is a polynomial of degree 4 and $q(x)$ is a polynomial of degree 3. What is the degree of the polynomial $H(x)=\left(x^{2} p(x)-1\right)^{2}-$ $\left(q(x)+x^{2}\right)^{2}+x^{8}$? Write a sentence about your reasoning.
7. (16 points) Let

$$
f(x)= \begin{cases}|x-3| & \text { if } x<2 \\ 5 & \text { if } x=2 \\ (4-x)^{2} & \text { if } x>2\end{cases}
$$

(a) What is $\lim _{x \rightarrow 2^{-}} f(x)$?
(b) What is $\lim _{x \rightarrow 2^{+}} f(x)$?
(c) Is f continuous at $x=2$?
(d) What is $\lim _{x \rightarrow 1^{-}} f(x)$?
8. (20 points) Let $f(x)=x^{2}-2 x$. Note that $f(3)=3$
(a) Find the slope of the line joining the points $(3,3)$ and $(3+h, f(3+h))$, where $h \neq 0$. Note that $(3+h, f(3+h))$ is a point on the graph of f.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .
(c) Replace the x with 3 in your answer to (b) to find $f^{\prime}(3)$.
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(3,3)$.
9. (20 points) For each condition listed, express in interval notation the set of all numbers that satisfy the condition. For example $1 \leq 2 x-3<7$ has solution the interval $[2,5)$.
(a) $x^{2} \neq 9$
(b) $x^{2} \geq 4$
(c) $(x-2)(x+3) \leq 0$
(d) $|2 x+3| \geq 9$
10. (15 points) Recall that the Intermediate Value Theorem guarantees that for any function f continuous over the interval $[a, b]$ and for any number M between $f(a)$ and $f(b)$, there exists a number c such that $f(c)=M$. The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.

