October 14, 2010
Name
The problems count as marked. The total number of points available is 172 . Throughout this test, show your work.

1. (10 points) The points $(2, k)$ and $(5,5)$ belong to the line perpendicular to the line $3 x-2 y=7$. Find the value of k.
Solution: The given line has slope $3 / 2$ so the one perpendicular has slope $-2 / 3$. Hence $\frac{k-5}{2-5}=-2 / 3$. Solving, we get $k=7$.
2. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{3}}$

Solution: The degrees of the numerator is 4 while the degree of the denominator is 6 limit is 0 .
(b) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}=$ $\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{\left(x^{2}-1\right)}=\lim _{x \rightarrow 1} \frac{x^{2}+1}{1}=2$
(c) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.

Solution: Expand the numerator to get

$$
\lim _{h \rightarrow 0} \frac{1+3 h+3 h^{2}+h^{3}-1}{h}=\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} \frac{h\left(3+3 h+h^{2}\right)}{h}
$$

$=\lim _{h \rightarrow 0}\left(3+3 h+h^{2}\right)$, and now the zero over zero problem has disappeared. So the limit is 3 .
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+x-2}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x-3}{x+2}=-2 / 3
$$

(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{\frac{1}{2 x}-\frac{1}{4}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must either factor or do the fractional arithmetic. Factoring seems to work best. The limit becomes

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{3}\left[\frac{1}{x}-\frac{1}{2}\right]}{\frac{1}{2}\left[\frac{1}{x}-\frac{1}{2}\right]}=\lim _{x \rightarrow 2} \frac{1}{3} \cdot \frac{2}{1}=\frac{2}{3} .
$$

(f) $\lim _{x \rightarrow-\infty} \frac{\sqrt{36 x^{2}-3 x}}{9 x-11}$

Solution: Divide both numerator and denominator by x to get $\lim _{x \rightarrow-\infty} \frac{-\sqrt{36-3 / x}}{9-11 / x}=$ $6 / 9=-2 / 3$ because the degree of the denominator is essentially the same as that of the numerator.
(g) $\lim _{x \rightarrow 2} \frac{\sqrt{8 x}-4}{x-2}$

Solution: Rationalize the numerator to get

$$
\lim _{x \rightarrow 2} \frac{8 x-16}{x-2} \frac{1}{\sqrt{8 x}+4}=8 \cdot \frac{1}{8}=1
$$

3. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=$

Solution: 2
(b) $\lim _{x \rightarrow-1^{+}} F(x)=$

Solution: 2
(c) $\lim _{x \rightarrow-1} F(x)=$

Solution: 2
(d) $F(-1)=$

Solution: 1
(e) $\lim _{x \rightarrow 1^{-}} F(x)=$

Solution: 0
(f) $\lim _{x \rightarrow 1^{+}} F(x)=$

Solution: 1
(g) $\lim _{x \rightarrow 1} F(x)=$

Solution: dne
(h) $\lim _{x \rightarrow 3} F(x)=$

Solution: 1
(i) $F(3)=$

Solution: 1
4. (10 points) The points $(0,0),(2,1),(u, v)$, and $(1,-2)$ are the vertices of a square. Find u and v.
Solution: One way to think about this is line segment through $(2,1)$ and (u, v) must have the same slope and length as the segment from $(0,0)$ to $(1,-2)$. But an easier way to think about this is that $(1,-2)$ is two down and one over from $(0,0$, so (u, v) must be two down and one over from $(2,1)$, That is $(u, v)=(3,-1)$.
5. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x+1}}{(x-1)(x-3)} .
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: The numerator is defined for $x+1 \geq 0$, that is $[-1, \infty)$. The denominator is zero at $x=1$ and at $x=3$, so these two numbers must be removed from $[-1, \infty)$. Thus, the domain is $[-1,1) \cup(1,3) \cup(3, \infty)$.
6. (12 points) Let $H(x)=\left(x^{2}-4\right)^{2}(2 x+3)^{3}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-4\right) \cdot 2 x(2 x+3)^{3}+\left(x^{2}-4\right)^{2} \cdot 3(2 x+3)^{2} \cdot 2 .
$$

Three of the zeros of $H^{\prime}(x)$ are $x= \pm 2$ and $x=-3 / 2$. Find the other two.
Solution: Factor out the common terms to get $H^{\prime}(x)=\left(x^{2}-4\right)(2 x+3)^{2}[4 x+$ $\left.6\left(x^{2}-4\right)\right]$. One factor is $2 x(2 x+3)+3\left(x^{2}-4\right)=7 x^{2}+6 x-12$. Apply the quadratic formula to get $x=\frac{-7 \pm \sqrt{36-4 \cdot 6(-12)}}{14}$ which reduces to $x=\frac{-7 \pm 2 \sqrt{93}}{14}$.
7. (40 points) Let $f(x)=2 x-\frac{1}{x}$ and let $g(x)=\sqrt{x^{2}+1}$. Compute, without simplifying, the composite functions listed below. Also use the product, quotient and chain rules to compute the derivatives listed.
(a) $f \circ g(x)$

Solution: $f \circ g(x)=2 \sqrt{x^{2}+1}-\left(x^{2}+1\right)^{-1 / 2}$.
(b) $g \circ f(x)$

Solution: $g \circ f(x)=\sqrt{(2 x-1 / x)^{2}+1}$.
(c) $f \circ f(x)$

Solution: $f \circ f(x)=2(2 x-1 / x)-\frac{1}{2 x-1 / x}$.
(d) $g^{\prime}(x)$

Solution: $g^{\prime}(x)=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x=\frac{x}{\sqrt{x^{2}+1}}$.
(e) $f^{\prime}(x)$

Solution: By the sum and power rules, $f^{\prime}(x)=2+x^{-2}$.
(f) $\frac{d}{d x}[f \circ g(x)]$

Solution: By the chain rule, $\frac{d}{d x} f \circ g(x)=\left[2+\left(\left(x^{2}+1\right)^{1 / 2}\right)^{-2}\right] \cdot \frac{x}{\sqrt{x^{2}+1}}$.
(g) $\frac{d}{d x}[g \cdot f(x)]$

Solution: $\frac{d}{d x}[g \cdot f(x)]=\frac{x}{\sqrt{x^{2}+1}} \cdot(2 x-1 / x)+\left(2+x^{-2}\right) \sqrt{x^{2}+1}$.
(h) $\frac{d}{d x}[f \div g(x)]$

Solution: $\frac{d}{d x}[f \div g(x)]=\frac{\left(2+x^{-2}\right) \sqrt{x^{2}+1}-\frac{x}{\sqrt{x^{2}+1}} \cdot\left(2 x-x^{-1}\right)}{x^{2}+1}$.
8. (10 points) Suppose $p(x)$ is a polynomial of degree 3 and $q(x)$ is a polynomial of degree 4. What is the degree of the polynomial $H(x)=\left(x^{2} p(x)-1\right)^{2}-$ $\left(q(x)+x^{2}\right)^{2}+x^{8}$? Write a sentence about your reasoning.
Solution: We can reason as follows: $H(x)$ is the sum of three polynomials $\left(x^{2} p(x)-1\right)^{2},-\left(q(x)+x^{2}\right)^{2}$ and x^{8}, and their degrees are, respectively 10,8 and 8 , so H has degree 10 .
9. (15 points) Let

$$
f(x)= \begin{cases}|x-3| & \text { if } x<2 \\ s & \text { if } x=2 \\ (t-x)^{2} & \text { if } x>2\end{cases}
$$

where s and t are constants.
(a) What is $\lim _{x \rightarrow 2^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}|x-3|=1$.
(b) For what values of t does $\lim _{x \rightarrow 2} f(x)$ exist.

Solution: For the limit to exist, the limit from the right must be 1 , so $t=1$ and $t=3$ both work.
(c) If t is one of the values found in (b), for what value of s is f continuous at $x=2$?
Solution: For f to be continuous, $f(2)$ must be the limit as x approaches 2 , which is 1 . So $s=1$ is the only number that works.
10. (10 points) The equation $x^{2}+4 x+(y-1)^{2}=21$ is a circle. What is its radius?

Solution: Complete the square to get $x^{2}+4 x+4-4+(y-1)^{2}=(x+2)^{2}-$ $4+(y-1)^{2}=21$. That is, $(x+2)^{2}+(y-1)^{2}=25=5^{2}$. Hence the radius of the circle is 5 .

