October 14, $2010 \quad$ Name
The problems count as marked. The total number of points available is 172 . Throughout this test, show your work.

1. (10 points) The points $(2, k)$ and $(5,5)$ belong to the line perpendicular to the line $3 x-2 y=7$. Find the value of k.
2. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{3}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
(c) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+x-2}$
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{\frac{1}{2 x}-\frac{1}{4}}$
(f) $\lim _{x \rightarrow-\infty} \frac{\sqrt{36 x^{2}-3 x}}{9 x-11}$
(g) $\lim _{x \rightarrow 2} \frac{\sqrt{8 x}-4}{x-2}$
3. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=$
(b) $\lim _{x \rightarrow-1^{+}} F(x)=$
(c) $\lim _{x \rightarrow-1} F(x)=$
(d) $F(-1)=$
(e) $\lim _{x \rightarrow 1^{-}} F(x)=$
(f) $\lim _{x \rightarrow 1^{+}} F(x)=$
(g) $\lim _{x \rightarrow 1} F(x)=$
(h) $\lim _{x \rightarrow 3} F(x)=$
(i) $F(3)=$
4. (10 points) The points $(0,0),(2,1),(u, v)$, and $(1,-2)$ are the vertices of a square. Find u and v.
5. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x+1}}{(x-1)(x-3)} .
$$

Express your answer as a union of intervals. That is, use interval notation.
6. (12 points) Let $H(x)=\left(x^{2}-4\right)^{2}(2 x+3)^{3}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-4\right) \cdot 2 x(2 x+3)^{3}+\left(x^{2}-4\right)^{2} \cdot 3(2 x+3)^{2} \cdot 2 .
$$

Three of the zeros of $H^{\prime}(x)$ are $x= \pm 2$ and $x=-3 / 2$. Find the other two.
7. (40 points) Let $f(x)=2 x-\frac{1}{x}$ and let $g(x)=\sqrt{x^{2}+1}$. Compute, without simplifying, the composite functions listed below. Also use the product, quotient and chain rules to compute the derivatives listed.
(a) $f \circ g(x)$
(b) $g \circ f(x)$
(c) $f \circ f(x)$
(d) $g^{\prime}(x)$
(e) $f^{\prime}(x)$
(f) $\frac{d}{d x}[f \circ g(x)]$
(g) $\frac{d}{d x}[g \cdot f(x)]$
(h) $\frac{d}{d x}[f \div g(x)]$
8. (10 points) Suppose $p(x)$ is a polynomial of degree 3 and $q(x)$ is a polynomial of degree 4. What is the degree of the polynomial $H(x)=\left(x^{2} p(x)-1\right)^{2}-$ $\left(q(x)+x^{2}\right)^{2}+x^{8}$? Write a sentence about your reasoning.
9. (15 points) Let

$$
f(x)= \begin{cases}|x-3| & \text { if } x<2 \\ s & \text { if } x=2 \\ (t-x)^{2} & \text { if } x>2\end{cases}
$$

where s and t are constants.
(a) What is $\lim _{x \rightarrow 2^{-}} f(x)$?
(b) For what values of t does $\lim _{x \rightarrow 2} f(x)$ exist.
(c) If t is one of the values found in (b), for what value of s is f continuous at $x=2$?
10. (10 points) The equation $x^{2}+4 x+(y-1)^{2}=21$ is a circle. What is its radius?

