February 17, $2010 \quad$ Name
The problems count as marked. The total number of points available is 156 . Throughout this test, show your work.

1. (10 points) Find an equation for a line that is perpendicular to the line $2 x-$ $3 y=7$ and which passes through the point $(4,2)$. Write your answer in slopeintercept form.
2. (20 points) Let $f(x)=(2 x-3)^{4}(5 x-1)^{2}+17 x^{2}$, and let $g(x)=(x-4)^{3}\left(8 x^{3}\right)-$ $17 x^{2}$.
(a) What is the degree of the polynomial f ?
(b) What is the degree of the polynomial g ?
(c) Estimate within one unit the value of $f(1000) / g(1000)$.
(d) Compute $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$.
3. (15 points) Find the (implied) domain of each of the functions given below. Express your answers in interval notation.
(a) $f(x)=\frac{1}{x^{2}-9}$
(b) $g(x)=\sqrt{x-4}$
(c) $h(x)=\sqrt{x(x-1)(x+3)}$
4. (55 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 0} \frac{x^{4}-x^{2}}{x^{2}}$
(b) $\lim _{x \rightarrow 3} \frac{\frac{1}{3 x}-\frac{1}{9}}{x-3}$
(c) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}$
(d) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
(e) $\lim _{x \rightarrow \infty} \frac{\sqrt{16 x^{2}-3}}{11-5 x}$

For problems (f) through (k), let

$$
f(x)=\left\{\begin{array}{cl}
7-x & \text { if } x>2 \\
10 & \text { if } x=2 \\
2 x+1 & \text { if } 0 \leq x<2 \\
-1 & \text { if } x<0
\end{array}\right.
$$

(f) $\lim _{x \rightarrow 0^{-}} f(x)$
(g) $\lim _{x \rightarrow 0^{+}} f(x)$
(h) $\lim _{x \rightarrow 0} f(x)$
(i) $\lim _{x \rightarrow 2^{-}} f(x)$
(j) $\lim _{x \rightarrow 2^{+}} f(x)$
(k) $\lim _{x \rightarrow 2} f(x)$
5. (21 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim _{x \rightarrow a^{-}} f(x)$	DNE	2	2	4	2	3
$\lim _{x \rightarrow a^{+}} f(x)$	1	2	2	3	2	DNE
$f(a)$	1	2	-1	1	2	3
$\lim _{x \rightarrow a^{-}} g(x)$	4	3	3	3	-1	0
$\lim _{x \rightarrow a^{+}} g(x)$	1	-2	0	3	-1	DNE
$g(a)$	-1	-1	3	-3	DNE	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.
(a) $\lim _{x \rightarrow 2^{+}}[f(x)-g(x)]$
(b) $\lim _{x \rightarrow 2^{-}}[f(x)-g(x)]$
(c) $\lim _{x \rightarrow 2}[f(x)-g(x)]$
(d) $(f+g)(4)$
(e) $f \circ g \circ f(-1)$
(f) Find all points (in the table) at which f is continuous.
(g) Find all points (in the table) at which g is continuous.
6. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-4\right)^{2}(3 x+2)+\left(2 x^{2}-4\right)^{3}(3 x+2) .
$$

7. (25 points) Let $f(x)=\sqrt{3 x-2}$. Notice that $f(6)=\sqrt{18-2}=4$.
(a) Find the slope of the line joining the points $(6,4)$ and $(6+h, f(6+h))$, where $h \neq 0$. Note that $(6+h, f(6+h))$ is a point on the graph of f.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.
(c) Finally compute the limit as h approaches 0 to find $f^{\prime}(a)$.
(d) Replace the a with 6 to find $f^{\prime}(6)$.
(e) Use the information you found in part (d) to find an equation for the line tangent to f at the point $(6, f(6))$.
