October 15, 2009
Name
The problems count as marked. The total number of points available is 163. Throughout this test, show your work.

1. (8 points) Find the exact value of the expression $|\pi-7|+|2 \pi-10|+|3 \pi-8|$. Express your answer in a very simple form.

Solution: Solve each absolute value separately to get $7-\pi, 10-2 \pi$ and $3 \pi-8$. Therefore, the sum is $7-\pi+10-2 \pi+3 \pi-8=17-8=9$.
2. (8 points) Find an equation for a line perpendicular to the line $5 x-2 y=7$ and which goes through the point $(-3,9)$. Express your answer in slope-intercept form.
Solution: The given line has slope $5 / 2$ so the one perpendicular has slope $-2 / 5$. Hence $y-9=(-2 / 5)(x+3)$. Thus $y=-2 x / 5+39 / 5$.
3. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{2}}$

Solution: The degrees of the numerator and denominator are both 4 so the limit is $3 / 9=1 / 3$.
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=$ $\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1}=3 / 2$
(c) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$.

Solution: Expand the numerator to get
$\lim _{h \rightarrow 0} \frac{8+12 h+6 h^{2}+h^{3}-8}{h}=\lim _{h \rightarrow 0} \frac{12 h+6 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} \frac{h\left(12+6 h+h^{2}\right)}{h}$
$=\lim _{h \rightarrow 0}\left(12+6 h+h^{2}\right)$, and now the zero over zero problem has disappeared. So the limit is 12 .
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+x-2}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x-3}{x+2}=-2 / 3
$$

(e) $\lim _{x \rightarrow 3} \frac{\frac{4}{x}-\frac{4}{3}}{x-3}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\lim _{x \rightarrow 3} \frac{\frac{4(3-x)}{3 x}}{(x-3)}=\lim _{x \rightarrow 3} \frac{-\frac{4(x-3)}{3 x}}{x-3}=\lim _{x \rightarrow 3} \frac{-\frac{4}{3 x}}{1}=-4 / 9 .
$$

(f) $\lim _{x \rightarrow-\infty} \frac{\sqrt{36 x^{2}-3}}{9 x-11}$

Solution: Divide both numerator and denominator by x to get $\lim _{x \rightarrow-\infty} \frac{\sqrt{36-3 / x^{2}}}{9-11 / x}=$ $6 / 9=2 / 3$ because the degree of the denominator is essentially the same as that of the numerator.
4. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=$

Solution: 2
(b) $\lim _{x \rightarrow-1^{+}} F(x)=$

Solution: 2
(c) $\lim _{x \rightarrow-1} F(x)=$

Solution: 2
(d) $F(-1)=$

Solution: 1
(e) $\lim _{x \rightarrow 1^{-}} F(x)=$

Solution: 0
(f) $\lim _{x \rightarrow 1^{+}} F(x)=$

Solution: 1
(g) $\lim _{x \rightarrow 1} F(x)=$

Solution: dne
(h) $\lim _{x \rightarrow 3} F(x)=$

Solution: -1
(i) $F(3)=$

Solution: - 1
5. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x+1}}{(x-1)(x-3)} .
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: The numerator is defined for $x+1 \geq 0$, that is $[-1, \infty)$. The denominator is zero at $x=1$ and at $x=3$, so these two numbers must be removed from $[-1, \infty)$. Thus, the domain is $[-1,1) \cup(1,3) \cup(3, \infty)$.
6. (12 points) The demand curve for a certain item is given by $p=x^{2}-15 x+$ 98 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=4 x+50$. Find the equilibrium quantity and equilibrium price.
Solution: Solve the two equations simultaneously by setting $x^{2}-15 x+98$ equal to $4 x+50$. This results in the quadratic $x^{2}-19 x+48=0$, which we can solve by factoring, $x=3$, and $x=16$. So $p=4 \cdot 3+50=62$. Or $p=4 \cdot 16+50=114$.
7. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1) .
$$

Solution: Factor out the common terms to get $g(x)=\left(2 x^{2}-1\right)(3 x+1)\left[\left(2 x^{2}-\right.\right.$ 1) -1$]=\left(2 x^{2}-1\right)(3 x+1)\left(2 x^{2}-2\right)$. Setting each factor equal to zero, we find the zeros are $x=-\sqrt{2} / 2, x=\sqrt{2} / 2, x=-1 / 3, x=1$ and $x=-1$.
8. (30 points) Let $g(x)=\sqrt{\frac{(2 x-15)(3 x+17)}{x^{2}+x-6}}$. The sequence of steps below will enable you to find the (implied) domain of g. Let $r(x)=(g(x))^{2}=\frac{(2 x-15)(3 x+17)}{x^{2}+x-6}$.
(a) Find the zeros of r. That is, find all x for which $r(x)=0$.

Solution: Solve $2 x-15=0$ to get $x=15 / 2$ and solve $3 x+17=0$ to get $x=-17 / 3$.
(b) Find the value(s) of x for which r is undefined.

Solution: Solve $x^{2}+x-6=0$ to get $x-2=0$ or $x=2$ and $x+3=0$ to get $x=-3$.
(c) Write as a union of intervals the set of real numbers that result by removing the values of x found in the first two parts.
Solution: It is $(-\infty,-17 / 3) \cup(-17 / 3,-3) \cup(-3,2) \cup(2,15 / 2) \cup(15 / 2, \infty)$.
(d) For each of the intervals in part (c), select a test point in the interval, and compute the sign (plus or minus) of r at that test point.

Solution:

(e) Express the domain of $g(x)$ as a union of intervals. Be sure to include or exclude the endpoints as appropriate.
Solution: Since $r(x)$ is positive on the first third and fifth of the intervals, our answer is at least $(-\infty,-17 / 3) \cup(-3,2) \cup(15 / 2, \infty)$. But the endpoints $15 / 2$ and $-17 / 3$ must be included also. Thus we have Domain of $g:(-\infty,-17 / 3] \cup(-3,2) \cup[15 / 2, \infty)$.
9. (25 points) Let $f(x)=\sqrt{3 x-2}$. Notice that $f(6)=\sqrt{18-2}=4$.
(a) Find the slope of the line joining the points $(6,4)$ and $(6+h, f(6+h))$, where $h \neq 0$. Note that $(6+h, f(6+h))$ is a point on the graph of f.
Solution: $\frac{\sqrt{3(6+h)-2}-4}{6+h-6}=\frac{\sqrt{3(6+h)-2}-4}{h}$.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.

Solution:

(c) Finally compute the limit as h approaches 0 to find $f^{\prime}(a)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the numerator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{3(a+h)-2}-\sqrt{3 a-2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3(a+h)-2}-\sqrt{3 a-2}}{h} \cdot \frac{\sqrt{3(a+h)-2}+\sqrt{3 a-2}}{\sqrt{3(a+h)-2}+\sqrt{3 a-2}} \\
& =\lim _{h \rightarrow 0} \frac{3(a+h)-2-(3 a-2)}{h(\sqrt{3(a+h)-2}+\sqrt{3 a-2})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3(a+h)-2}+\sqrt{3 a-2})} \\
& =\lim _{h \rightarrow 0} \frac{3}{(\sqrt{3(a+h)-2}+\sqrt{3 a-2})} \\
& =\frac{3}{2(\sqrt{3 a-2})}
\end{aligned}
$$

(d) Replace the a with 6 to find $f^{\prime}(6)$.

Solution: $f^{\prime}(6)=3 \cdot 16^{-1 / 2} / 2=3 / 8$
(e) Use the information given and that found in (d) to find an equation for the line tangent to the graph of f at the point $(6,4)$.
Solution: The line is $y-4=3(x-6) / 8$, or $y=3 x / 8+7 / 4$.
10. (10 points) Write in interval form the set of all real numbers x for which

$$
f(x)=\frac{|x-1|}{x-1}+\frac{|x+3|}{x+3}
$$

is continuous.
Solution: We must eliminate precisely the values $x=1$ and $x=-3$, so the set is $(-\infty,-3) \cup(-3,1) \cup(1, \infty)$.

