October 15, 2009
Name
The problems count as marked. The total number of points available is 163. Throughout this test, show your work.

1. (8 points) Find the exact value of the expression $|\pi-7|+|2 \pi-10|+|3 \pi-8|$. Express your answer in a very simple form.
2. (8 points) Find an equation for a line perpendicular to the line $5 x-2 y=7$ and which goes through the point $(-3,9)$. Express your answer in slope-intercept form.
3. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{2}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
(c) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$.
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+x-2}$
(e) $\lim _{x \rightarrow 3} \frac{\frac{4}{x}-\frac{4}{3}}{x-3}$
(f) $\lim _{x \rightarrow-\infty} \frac{\sqrt{36 x^{2}-3}}{9 x-11}$
4. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=$
(b) $\lim _{x \rightarrow-1^{+}} F(x)=$
(c) $\lim _{x \rightarrow-1} F(x)=$
(d) $F(-1)=$
(e) $\lim _{x \rightarrow 1^{-}} F(x)=$
(f) $\lim _{x \rightarrow 1^{+}} F(x)=$
(g) $\lim _{x \rightarrow 1} F(x)=$
(h) $\lim _{x \rightarrow 3} F(x)=$
(i) $F(3)=$
5. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x+1}}{(x-1)(x-3)}
$$

Express your answer as a union of intervals. That is, use interval notation.
6. (12 points) The demand curve for a certain item is given by $p=x^{2}-15 x+$ 98 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=4 x+50$. Find the equilibrium quantity and equilibrium price.
7. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1) .
$$

8. (30 points) Let $g(x)=\sqrt{\frac{(2 x-15)(3 x+17)}{x^{2}+x-6}}$. The sequence of steps below will enable you to find the (implied) domain of g. Let $r(x)=(g(x))^{2}=\frac{(2 x-15)(3 x+17)}{x^{2}+x-6}$.
(a) Find the zeros of r. That is, find all x for which $r(x)=0$.
(b) Find the value(s) of x for which r is undefined.
(c) Write as a union of intervals the set of real numbers that result by removing the values of x found in the first two parts.
(d) For each of the intervals in part (c), select a test point in the interval, and compute the sign (plus or minus) of r at that test point.
(e) Express the domain of $g(x)$ as a union of intervals. Be sure to include or exclude the endpoints as appropriate.
9. (25 points) Let $f(x)=\sqrt{3 x-2}$. Notice that $f(6)=\sqrt{18-2}=4$.
(a) Find the slope of the line joining the points $(6,4)$ and $(6+h, f(6+h))$, where $h \neq 0$. Note that $(6+h, f(6+h))$ is a point on the graph of f.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.
(c) Finally compute the limit as h approaches 0 to find $f^{\prime}(a)$.
(d) Replace the a with 6 to find $f^{\prime}(6)$.
(e) Use the information given and that found in (d) to find an equation for the line tangent to the graph of f at the point $(6,4)$.
10. (10 points) Write in interval form the set of all real numbers x for which

$$
f(x)=\frac{|x-1|}{x-1}+\frac{|x+3|}{x+3}
$$

is continuous.

