February 12, 2009
Name
The problems count as marked. The total number of points available is 180. Throughout this test, show your work.

1. (8 points) Find the exact value of the expression $|10-3 \sqrt{5}|-|2 \sqrt{5}-4|-|\sqrt{5}-6|$. Express your answer in a very simple form.

Solution: Solve each absolute value separately to get $10-3 \sqrt{5}, 2 \sqrt{5}-4$ and $-(\sqrt{5}-6)$. Therefore, the value is $10-3 \sqrt{5}-(2 \sqrt{5}-4)-(-(\sqrt{5}-6))=$ $10-3 \sqrt{5}-2 \sqrt{5}+4+\sqrt{5}-6=10+4-6-(3+2-1) \sqrt{5}=8-4 \sqrt{5}$.
2. (8 points) Find an equation for a line perpendicular to the line $3 x-2 y=7$ and which goes through the point $(-3,5)$.

Solution: The given line has slope $3 / 2$ so the one perpendicular has slope $-2 / 3$. Hence $y-5=(-2 / 3)(x+3)$. Thus $y=-2 x / 3+3$.
3. (52 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-6 x+5}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x+3}{x-5}=4 /-4=-1
$$

(b) $\lim _{x \rightarrow 3} \frac{\frac{2}{x}-\frac{2}{3}}{x-3}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\lim _{x \rightarrow 3} \frac{\frac{2(3-x)}{2 x}}{2(x-3)}=\lim _{x \rightarrow 3} \frac{-\frac{2(x-3)}{3 x}}{x-3}=\lim _{x \rightarrow 3} \frac{-\frac{2}{3 x}}{1}=-2 / 9
$$

(c) $\lim _{x \rightarrow-\infty} \frac{|18 x-3|}{6 x-11}$

Solution: Divide both numerator and denominator by x to get

$$
\lim _{x \rightarrow-\infty} \frac{3 / x-18 x / x}{11 / x-6 x / x}=18 /-6=-3
$$

because the degree of the denominator is essentially the same as that of the numerator.
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{4}-3}{\left(11-3 x^{2}\right)^{2}}$

Solution: The degrees of the numerator and denominator are both 4 so the limit is $6 / 9=2 / 3$.
(e) $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}=$ $\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow-1} \frac{x^{2}-x+1}{x-1}=-3 / 2$
(f) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.

Solution: Expand the numerator to get $\lim _{h \rightarrow 0} \frac{1+3 h+3 h^{2}+h^{3}-1}{h}=\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h}=$ $\lim _{h \rightarrow 0} \frac{h\left(3+3 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3+3 h+h^{2}\right)$, and now the zero over zero problem has disappeared. So the limit is 3 .

For problems (g) through (m), let

$$
f(x)=\left\{\begin{array}{cl}
-2 & \text { if } x<0 \\
2 x^{2}-2 & \text { if } 0 \leq x<2 \\
3 & \text { if } x=2 \\
10-2 x & \text { if } x>2
\end{array}\right.
$$

(g) $\lim _{x \rightarrow 2^{-}} f(x)$

Solution: 6
(h) $\lim _{x \rightarrow 2^{+}} f(x)$

Solution: 6
(i) $\lim _{x \rightarrow 2} f(x)$

Solution: 6
(j) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: -2
(k) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: -2
(l) $\lim _{x \rightarrow 0} f(x)$

Solution: - 2
(m) $f(0)$

Solution: -2
4. (12 points) The demand curve for a certain item is given by $p=-x^{2}-8 x+$ 100 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=4 x+20$. Find the equilibrium quantity and equilibrium price.
Solution: Solve the two equations simultaneously by setting $-x^{2}-8 x+100$ equal to $4 x+20$. This results in the quadratic $x^{2}+12 x-80=0$, which we can solve by the quadratic formula. $x=\frac{-12 \pm \sqrt{144+4 \cdot 1 \cdot 80}}{2} \approx \frac{-12+21.54}{2} \approx 4.77$. The other root is negative. The corresponding p value is $4 \cdot 4.77+20=39.08$.
5. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1)^{2} .
$$

Solution: Factor out the common terms to get $g(x)=\left(2 x^{2}-1\right)(3 x+1)\left[\left(2 x^{2}-\right.\right.$ 1) $-(3 x+1)=\left(2 x^{2}-1\right)(3 x+1)\left(2 x^{2}-3 x-2\right)$. Setting each factor equal to zero, we find the zeros are $x=-\sqrt{2} / 2, x=\sqrt{2} / 2, x=-1 / 3, x=2$ and $x=-1 / 2$.
6. (30 points) Let $g(x)=\sqrt{\frac{2 x-7)(3 x+4)}{x^{2}-6 x+5}}$. The sequence of steps below will enable you to find the (implied) domain of g. Let $r(x)=(g(x))^{2}=\frac{(2 x-7)(3 x+4)}{x^{2}-6 x+5}$.
(a) Find the zeros of r.

Solution: Solve $2 x-7=0$ to get $x=7 / 2$ and solve $3 x+4=0$ to get $x=-4 / 3$.
(b) Find the value(s) of x for which r is undefined.

Solution: Solve $x^{2}-6 x+5=0$ to get $x-5=0$ or $x=5$ and $x-1=0$ to get $x=1$.
(c) Write as a union of intervals the set of real numbers that result by removing the values of x found in the first two parts.
Solution: It is $(-\infty,-4 / 3) \cup(-4 / 3,1) \cup(1,7 / 2) \cup(7 / 2,5) \cup(5, \infty)$.
(d) For each of the intervals in part 3, select a point in the interval, and compute the sign (plus or minus) of r at that test point.

Solution:

(e) Express the domain of $g(x)$ as a union of intervals. Be sure to include or exclude the endpoints as appropriate.
Solution: Since $r(x)$ is positive on the first third and fifth of the intervals, our answer is at least $(-\infty,-4 / 3) \cup(1,7 / 2) \cup(5, \infty)$. But the endpoints $7 / 2$ and $-4 / 3$ must be included also. Thus we have Domain of g : the set $(-\infty,-4 / 3] \cup(1,7 / 2] \cup(5, \infty)$.
7. (20 points) Let $f(x)=x^{2}-2 x$. Note that $f(2)=0$
(a) Find the slope of the line joining the points $(2,0)$ and $(2+h, f(2+h))$, where $h \neq 0$. Note that $(2+h, f(2+h))$ is a point on the graph of f. Then find the limit of the expression as h approaches 0 to compute $f^{\prime}(2)$.
Solution: The slope is $\frac{f(2+h)-f(2)}{2+h-2}=\frac{(2+h)^{2}-2(2+h)-\left(2^{2}-2 \cdot 2\right)}{h}=\frac{2 h+h^{2}}{h}$. The limit of the expression as h goes to zero is 2 .
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-2(x+h)-\left(x^{2}-2 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-2 x-2 h-x^{2}+2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-2)}{h}=2 x-2 .
\end{aligned}
$$

(c) Replace the x with 2 to find $f^{\prime}(2)$.

Solution: $f^{\prime}(2)=2$
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(2,0)$.
Solution: The line is $y-0=2(x-2)$, or $y=2 x-4$.
8. (40 points) Below is a table of some of the values of two functions f and g and information about their some of their left-hand and right-hand limits. All the questions below refer to values of a in the set $\{-2,-1,0,1,2,3\}$.

a	$f(a)$	$g(a)$	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a^{-}} g(x)$	$\lim _{x \rightarrow a^{+}} g(x)$
-2	1	2	1	1	2	DNE
-1	0	1	2	2	1	1
0	2	-1	DNE	0	-1	-1
1	-1	0	-1	-1	2	-2
2	-2	-1	-2	-1	-1	-1
3	1	1	1	1	1	-1

(a) For which values of a does $\lim _{x \rightarrow a} f(x)$ exist?

Solution: All these problems involve looking up the answers in the table. Notice that the left and right limits of f are the same when $a=-2,-1,1$, and 3.
(b) For which values of a does $\lim _{x \rightarrow a} g(x)$ exist?

Solution: The values are $-1,0$, and 2
(c) For which values of a is $f(x)$ continuous?

Solution: The values are $-2,1$, and 3 .
(d) For which values of a is $g(x)$ continuous?

Solution: g is continuous when its limit and its value are the same, and this occurs when $a=-1,0$ and 2 .
(e) Find each of the following, if they exist.
i. $\lim _{x \rightarrow-1}[f(x) \cdot g(x)]$.

Solution: 2
ii. $f \circ g \circ f(1)$

Solution: -1
iii. $g \circ g \circ g(1)$

Solution: $g \circ g \circ g(1)=g \circ g(0)=g(-1)=1$
iv. $g\left(\lim _{x \rightarrow-1} f(x)\right)$.

Solution: $g(2)=-1$
(f) Find a value of a satisfying each of the equations. If more than one value exists, find them all.
i. $f \circ g(a)=0$.

Solution: There are two values, 0 and 2.
ii. $g \circ f(a)=0$.

Solution: There are two values, -2 and 3 .
iii. $(f(a))^{2}+(g(a))^{2}=5$.

Solution: There are three values, $-2,0$, and 2 .
iv. $\left(\lim _{x \rightarrow a} f(x)\right)^{2}+\left(\lim _{x \rightarrow a} g(x)\right)^{2}=5$.

Solution: There are two values, -1 and 1.

