February 12, $2009 \quad$ Name
The problems count as marked. The total number of points available is 180. Throughout this test, show your work.

1. (8 points) Find the exact value of the expression $|10-3 \sqrt{5}|-|2 \sqrt{5}-4|-|\sqrt{5}-6|$. Express your answer in a very simple form.
2. (8 points) Find an equation for a line perpendicular to the line $3 x-2 y=7$ and which goes through the point $(-3,5)$.
3. (52 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-6 x+5}$
(b) $\lim _{x \rightarrow 3} \frac{\frac{2}{x}-\frac{2}{3}}{x-3}$
(c) $\lim _{x \rightarrow-\infty} \frac{|18 x-3|}{6 x-11}$
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{4}-3}{\left(11-3 x^{2}\right)^{2}}$
(e) $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}$
(f) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.

For problems (g) through (m), let

$$
f(x)=\left\{\begin{array}{cl}
-2 & \text { if } x<0 \\
2 x^{2}-2 & \text { if } 0 \leq x<2 \\
3 & \text { if } x=2 \\
10-2 x & \text { if } x>2
\end{array}\right.
$$

(g) $\lim _{x \rightarrow 2^{-}} f(x)$
(h) $\lim _{x \rightarrow 2^{+}} f(x)$
(i) $\lim _{x \rightarrow 2} f(x)$
(j) $\lim _{x \rightarrow 0^{-}} f(x)$
(k) $\lim _{x \rightarrow 0^{+}} f(x)$
(l) $\lim _{x \rightarrow 0} f(x)$
(m) $f(0)$
4. (12 points) The demand curve for a certain item is given by $p=-x^{2}-8 x+$ 100 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=4 x+20$. Find the equilibrium quantity and equilibrium price.
5. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1)^{2}
$$

6. (30 points) Let $g(x)=\sqrt{\frac{2 x-7)(3 x+4)}{x^{2}-6 x+5}}$. The sequence of steps below will enable you to find the (implied) domain of g. Let $r(x)=(g(x))^{2}=\frac{(2 x-7)(3 x+4)}{x^{2}-6 x+5}$.
(a) Find the zeros of r.
(b) Find the value(s) of x for which r is undefined.
(c) Write as a union of intervals the set of real numbers that result by removing the values of x found in the first two parts.
(d) For each of the intervals in part 3, select a point in the interval, and compute the sign (plus or minus) of r at that test point.
(e) Express the domain of $g(x)$ as a union of intervals. Be sure to include or exclude the endpoints as appropriate.
7. (20 points) Let $f(x)=x^{2}-2 x$. Note that $f(2)=0$
(a) Find the slope of the line joining the points $(2,0)$ and $(2+h, f(2+h))$, where $h \neq 0$. Note that $(2+h, f(2+h))$ is a point on the graph of f. Then find the limit of the expression as h approaches 0 to compute $f^{\prime}(2)$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .
(c) Replace the x with 2 to find $f^{\prime}(2)$.
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(2,0)$.
8. (40 points) Below is a table of some of the values of two functions f and g and information about their some of their left-hand and right-hand limits. All the questions below refer to values of a in the set $\{-2,-1,0,1,2,3\}$.

a	$f(a)$	$g(a)$	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a^{-}} g(x)$	$\lim _{x \rightarrow a^{+}} g(x)$
-2	1	2	1	1	2	DNE
-1	0	1	2	2	1	1
0	2	-1	DNE	0	-1	-1
1	-1	0	-1	-1	2	-2
2	-2	-1	-2	-1	-1	-1
3	1	1	1	1	1	-1

(a) For which values of a does $\lim _{x \rightarrow a} f(x)$ exist?
(b) For which values of a does $\lim _{x \rightarrow a} g(x)$ exist?
(c) For which values of a is $f(x)$ continuous?
(d) For which values of a is $g(x)$ continuous?
(e) Find each of the following, if they exist.
i. $\lim _{x \rightarrow-1}[f(x) \cdot g(x)]$.
ii. $f \circ g \circ f(1)$
iii. $g \circ g \circ g(1)$
iv. $g\left(\lim _{x \rightarrow-1} f(x)\right)$.
(f) Find a value of a satisfying each of the equations. If more than one value exists, find them all.
i. $f \circ g(a)=0$.
ii. $g \circ f(a)=0$.
iii. $(f(a))^{2}+(g(a))^{2}=5$.
iv. $\left(\lim _{x \rightarrow a} f(x)\right)^{2}+\left(\lim _{x \rightarrow a} g(x)\right)^{2}=5$.

