October 15, 2008
Name
The problems count as marked. The total number of points available is 133. Throughout this test, show your work.

1. (6 points) Find an equation (in slope-intercept form) for a line parallel to the line $3 x-6 y=7$ and which goes through the point $(-3,5)$.

Solution: The given line has slope $1 / 2$ so the one parallel has slope $1 / 2$ also. Hence $y-5=(1 / 2)(x+3)$. Thus $y=x / 2+13 / 2$.
2. (40 points) Evaluate each of the limits (and function values) indicated below.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}+x-12}{x^{2}-4 x+3}$

Solution: Factor and eliminate the $x-3$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x+4}{x-1}=7 / 2
$$

(b) $\lim _{x \rightarrow 3} \frac{x-3}{\frac{1}{x}-\frac{1}{3}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \frac{x-3}{\frac{3-x}{3 x}}=\lim _{x \rightarrow 3} \frac{x-3}{-\frac{x-3}{3 x}} \\
= & \lim _{x \rightarrow 3} \frac{1}{-\frac{1}{3 x}}=-9 .
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{\sqrt{16 x^{2}-3}}{11-5 x}$

Solution: Divide both numerator and denominator by x to get $\lim _{x \rightarrow \infty} \frac{\sqrt{16 x^{2} / x^{2}-3 / x^{2}}}{11 / x-5 x / x}=$ $-4 / 5$ because the degree of the denominator is essentially the same as that of the numerator.
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{5}-3 x^{3}}{11-12 x^{4}}$

Solution: The limit does not exist because the degree of the denominator is less than that of the numerator.
(e) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}=$ $\lim _{x \rightarrow 1} \frac{(x-1)(x+1}{(x-1)\left(x^{2}+x+1\right)}=\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+x+1}=2 / 3$
(f) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$.

Solution: Expand the numerator to get $\lim _{h \rightarrow 0} \frac{8+12 h+6 h^{2}+h^{3}-8}{h}=\lim _{h \rightarrow 0} \frac{12 h+6 h^{2}+h^{3}}{h}=$ $\lim _{h \rightarrow 0} \frac{h\left(12+6 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(12+6 h+h^{2}\right)$, and now the zero over zero problem has disappeared. So the limit is 12 .

The following eight problems are worth 2 points each. For problems (g) through (n), let

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
x-1 & \text { if } 0 \leq x<2 \\
-1 & \text { if } x=2 \\
1 & \text { if } x>2
\end{array}\right.
$$

Find the value, if it exists, of each item below. Use DNE when the limit does not exist.
(g) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: 0
(h) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: - 1
(i) $\lim _{x \rightarrow 0} f(x)$

Solution: DNE because the left limit and right limit are different.
(j) $f(0)$

Solution: -1
(k) $\lim _{x \rightarrow 2^{-}} f(x)$

Solution: 1
(l) $\lim _{x \rightarrow 2^{+}} f(x)$

Solution: 1, because both the left limit and the right limit are 1.
(m) $\lim _{x \rightarrow 2} f(x)$

Solution: 1
(n) $f(2)$

Solution: -1
3. (10 points) Find all the x-intercepts of the function

$$
g(x)=3(2 x+7)^{2}(x-1)^{2}-(2 x+7)(x-1)^{3}
$$

Solution: Factor out the common terms to get $g(x)=(2 x+7)(x-1)^{2}[3(2 x+$ $7-(x-1)]=(2 x+7)(x-1)^{2}[5 x+22]$. Setting each factor equal to zero, we find the zeros are $x=-7 / 2, x=1$, and $x=-22 / 5$.
4. (15 points)
(a) Find all solutions of the inequality $|2 x-7| \leq 5$ and write your solution in interval notation.
Solution: First solve the equation $|2 x-7| \leq 5$, which has two solutions: $2 x-7=5$ yields $x=6$ and $2 x-7=-5$ yields $x=1$. Now consider the three intervals determined by these two points: $(-\infty, 1),(1,6),(6, \infty)$. Select a test point from each of these intervals. I've picked 0,3 , and 7 . Trying each of these, we see that $|2 \cdot 0-7|=7 \leq 5, \mathrm{NO} ;|2 \cdot 3-7|=1 \leq 5$, YES; $|2 \cdot 7-7|=7 \leq 5$, NO; So only the interval $(1,6)$ works. Check the endpoints and see that they both work also. So our answer is $[1,6]$.
(b) Find the (implied) domain of

$$
f(x)=\sqrt{|2 x-7|-3}
$$

and write your answer in interval notation.
Solution: We need to find out where $|2 x-7|-3$ is zero or positive. First solve the equation $|2 x-7|-3=0$ to get $x=5$ and $x=2$. Then use the test interval technique to find the sign chart for $g(x)=|2 x-7|-3$. You see that $g(x)>0$ on both $(-\infty, 2)$ and $(5, \infty)$. Then notice that the endpoints need to be included. So the answer is $(-\infty, 2] \cup[5, \infty)$.
5. (20 points) Let $f(x)=\frac{1}{x+1}$. Note that $f(0)=1$.
(a) Find the slope of the line joining the points $(0,1)$ and $(0+h, f(0+h))=$ $(h, f(h))$, where $h \neq 0$. Then find the limit as h approaches 0 to get $f^{\prime}(0$.
Solution: $\frac{f(h)-1}{h-0}$, which can be massaged to give $-\frac{1}{h+1}$. Thus $f^{\prime}(0)=-1$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+1-(x+h+1)}{(x+1)(x+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+1)(x+h+1)}}{h} \\
& =-\frac{1}{(x+1)^{2}} .
\end{aligned}
$$

(c) Replace the x with 0 in your answer to (b) to find $f^{\prime}(0)$.

Solution: $f^{\prime}(0)=-1$
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(0,1)$.
Solution: The line is $y-1=-1(x-0)$, or $y=-x+1$.
6. (18 points) If a ball is thrown vertically upward from the roof of 128 foot building with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=128+$ $64 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?

Solution: $s(1)=176$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=64-32 t=0$ to get $t=2$ when the ball reaches its zenith. Thus, the max height is $s(2)=128+64(2)-16(2)^{2}=192$.
(d) After how many seconds is the ball exactly 160 feet above the ground?

Solution: Use the quadratic formula to solve $128+64 t-16 t^{2}=160$.
You get $t=\frac{4 \pm \sqrt{16-8}}{2}=2 \pm \sqrt{2}$.
(e) How fast is the ball going the first time it reaches the height 160 ?

Solution: Evaluate $s(t)$ when $t=2-\sqrt{2}$ to get $32 \sqrt{2}$ feet per second.
(f) How fast is the ball going the second time it reaches the height 160 ?

Solution: Evaluate $s(t)$ when $t=2+\sqrt{2}$ to get $-32 \sqrt{2}$ feet per second.
In other words the ball is going downward at the same rate it was moving upwards when first went through 160 feet.
7. (24 points) Compute the following derivatives.
(a) Let $f(x)=\frac{x^{2}-2 x}{3 x-x^{2}}$. Find $\frac{d}{d x} f(x)$.

Solution: Use the quotient rule to get $f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{(2 x-2)\left(3 x-x^{2}\right)-(3-2 x)\left(x^{2}-2 x\right)}{\left(3 x-x^{2}\right)^{2}}$. This can be simplified to $-\frac{x^{2}}{\left(3 x-x^{2}\right)^{2}}$ which can be simplified still further: $-\frac{1}{(x-3)^{2}}$.
(b) Let $g(x)=\sqrt{x^{3}+2 x+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=1 / 2\left(x^{3}+2 x+4\right)^{-1 / 2} \cdot\left(3 x^{2}+2\right)=\frac{3 x^{2}+2}{2 \sqrt{x^{3}+2 x+4}}$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$

Solution: Use the product rule to get $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)=2(3 x+$ $1)^{1} \cdot 3 \cdot\left(4 x^{2}-1\right)+8 x(3 x+1)^{2}$, which can be simplified but not significantly.
(d) Let $f(x)=\left(2 x^{2}+1\right)^{4}$. Find $f^{\prime}(x)$.

Solution: Note that, by the chain rule, $f^{\prime}(x)=4\left(2 x^{2}+1\right)^{3} \cdot 4 x=$ $16 x\left(2 x^{2}+1\right)^{3}$.

