February 14, 2008 Name
The problems count as marked. The total number of points available is 142. Throughout this test, show your work.

1. (8 points) Find an equation for a line perpendicular to the line $3 x-6 y=7$ and which goes through the point $(-3,4)$.

Solution: The given line has slope $1 / 2$ so the one perpendicular has slope -2 . Hence $y-4=(-2)(x+3)$. Thus $y=-2 x-2$.
2. (52 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-4 x+3}$

Solution: Factor and eliminate the $x-1$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x+2}{x-3}=-3 / 2
$$

(b) $\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \frac{\frac{5-x}{5 x}}{x-5}=\lim _{x \rightarrow 5} \frac{-\frac{x-5}{5 x}}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{-\frac{1}{5 x}}{1}=-1 / 25 .
\end{aligned}
$$

(c) $\lim _{x \rightarrow-\infty} \frac{|16 x-3|}{11-5 x}$

Solution: Divide both numerator and denominator by x to get $\lim _{x \rightarrow-\infty} \frac{3 / x-16 x / x}{11 / x-5 x / x}=$ $16 / 5$ because the degree of the denominator is essentially the same as that of the numerator.
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{2}-3}{11-5 x^{3}}$

Solution: $\quad \lim _{x \rightarrow \infty} \frac{6 x^{2}-3}{11-5 x^{3}}=\lim _{x \rightarrow \infty} \frac{6 x^{2} / x^{3}-3 / x^{3}}{11 / x^{3}-5 x^{3} / x^{3}}=0 /(-5)=0$ because the degree of the denominator is the larger than that of the numerator.
(e) $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow-1} \frac{x^{3}-1}{x^{2}-1}=$ $\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow-1} \frac{x^{2}-x+1}{x-1}=-3 / 2$
(f) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.

Solution: Expand the numerator to get $\lim _{h \rightarrow 0} \frac{1+3 h+3 h^{2}+h^{3}-1}{h}=\lim _{h \rightarrow 0} \frac{3 h+3 h^{2}+h^{3}}{h}=$ $\lim _{h \rightarrow 0} \frac{h\left(3+3 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3+3 h+h^{2}\right.$, and now the zero over zero problem has disappeared. So the limit is 3 .

For problems (g) through (m), let

$$
f(x)=\left\{\begin{array}{cl}
-2 & \text { if } x<0 \\
2 x-2 & \text { if } 0 \leq x<2 \\
3 & \text { if } x=2 \\
7-2 x & \text { if } x>2
\end{array}\right.
$$

(g) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: -2
(h) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: -2
(i) $\lim _{x \rightarrow 0} f(x)$

Solution: -2
(j) $f(0)$

Solution: -2
(k) $\lim _{x \rightarrow 2^{-}} f(x)$

Solution: 2
(1) $\lim _{x \rightarrow 2^{+}} f(x)$

Solution: 3
(m) $\lim _{x \rightarrow 2} f(x)$

Solution: DNE
3. (12 points) The demand curve for a certain item is given by $p=-x^{2}-2 x+$ 100 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=8 x+25$. Find the equilibrium quantity and equilibrium price.
Solution: At the equilibrium point, the two curves intersect, so write $-x^{2}-$ $2 x+100=8 x+25$, which is equivalent to $x^{2}+10 x-75=0$. Factor the left side to get $(x-5)(x+15)=0$, and discard the negative root. So $x=5$ thousand and $p=8 \cdot 5+25=65$.
4. (15 points) The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.

Solution:

(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.

Solution:

5. (8 points) Find all the x-intercepts of the function

$$
g(x)=3(2 x-5)^{3}(2 x+1)^{2}-6(2 x-5)^{2}(2 x+1)^{3} .
$$

Solution: Factor the common stuff out to get $(2 x+1)^{2}(2 x-5)^{2}[3(2 x-5)-$ $6(2 x+1)]$. Setting each of the three factors to zero yields $x=-1 / 2, x=5 / 2$, and $x=-7 / 2$.
6. (15 points)
(a) Find all solutions of the equation $||x-3|-5|=1$.

Solution: Note that either $|x-3|-5=1$ or $|x-3|-5=-1$. In the first case, $|x-3|=6$ in which case $x-3=6$ or $x-3=-6$. Thus both $x=9$ and $x=-3$ are solutions. In the second case $|x-3|=4$ in which case $x-3=4$ or $x-3=-4$. So we get $x=-1$ and $x=7$.
(b) Find the (implied) domain of

$$
f(x)=\sqrt{||x-3|-5|-1}
$$

and write your answer in interval notation.
Solution: Note that the domain must include those values of x for which the value inside the radical is at least zero. Use the Test Interval Technique with the numbers $\{-3,-1,7,9\}$ as branch points. We can use test points $x=-2$ and $x=7$ to see that $||x-3|-5|-1$ is negative in the intervals $(-3,-1)$ and $(7,9)$. So the domain D is $(-\infty,-3] \cup[-1,7] \cup[9, \infty)$
7. (20 points) Let $f(x)=x^{2}-x$. Note that $f(3)=6$
(a) Find the slope of the line joining the points $(3,6)$ and $(3+h, f(3+h))$, where $h \neq 0$. Note that $(3+h, f(3+h))$ is a point on the graph of f.

Solution: .

(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-(x+h)-\left(x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x-h-x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h}=2 x-1 .
\end{aligned}
$$

(c) Replace the x with 3 in your answer to (b) to find $f^{\prime}(3)$.

Solution: $f^{\prime}(3)=5$
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(3,6)$.
Solution: The line is $y-6=5(x-3)$, or $y=5 x-9$.
8. (12 points) Given two functions,

$$
g(x)=\left\{\begin{array}{cl}
2 x-1 & \text { if } 1<x<4 \\
4-x & \text { otherwise }
\end{array} \quad \text { and } \quad f(x)= \begin{cases}x^{2}+3 & \text { if } x \geq 1 \\
x^{2}-4 & \text { if } x<1\end{cases}\right.
$$

Complete the following table.

x	$g(x)$	$f(x)$	$f \circ g(x)$	$g \circ f(x)$
-4	8	12	67	-8
-1				
0				
1				
2				
3				
3.5				
4				

Solution:

x	$g(x)$	$f(x)$	$f \circ g(x)$	$g \circ f(x)$
-4	8	12	67	-8
-1	5	-3	28	7
0	4	-4	19	8
1	3	4	12	0
2	3	7	12	-3
3	5	12	28	-8
3.5	6	$61 / 4$	39	$-45 / 4$
4	0	19	-4	-15

