February 14, 2008 Name
The problems count as marked. The total number of points available is 142. Throughout this test, show your work.

1. (8 points) Find an equation for a line perpendicular to the line $3 x-6 y=7$ and which goes through the point $(-3,4)$.
2. (52 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-4 x+3}$
(b) $\lim _{x \rightarrow 5} \frac{\frac{1}{x}-\frac{1}{5}}{x-5}$
(c) $\lim _{x \rightarrow-\infty} \frac{|16 x-3|}{11-5 x}$
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{2}-3}{11-5 x^{3}}$
(e) $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}$
(f) $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-1}{h}$.

For problems (g) through (m), let

$$
f(x)=\left\{\begin{array}{cl}
-2 & \text { if } x<0 \\
2 x-2 & \text { if } 0 \leq x<2 \\
3 & \text { if } x=2 \\
7-2 x & \text { if } x>2
\end{array}\right.
$$

(g) $\lim _{x \rightarrow 0^{-}} f(x)$
(h) $\lim _{x \rightarrow 0^{+}} f(x)$
(i) $\lim _{x \rightarrow 0} f(x)$
(j) $f(0)$
(k) $\lim _{x \rightarrow 2^{-}} f(x)$
(l) $\lim _{x \rightarrow 2^{+}} f(x)$
(m) $\lim _{x \rightarrow 2} f(x)$
3. (12 points) The demand curve for a certain item is given by $p=-x^{2}-2 x+$ 100 where x represents the quantity demanded in units of a thousand and p represents the price in dollars. The supply curve is given by $p=8 x+25$. Find the equilibrium quantity and equilibrium price.
4. (15 points) The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.
5. (8 points) Find all the x-intercepts of the function

$$
g(x)=3(2 x-5)^{3}(2 x+1)^{2}-6(2 x-5)^{2}(2 x+1)^{3} .
$$

6. (15 points)
(a) Find all solutions of the equation $||x-3|-5|=1$.
(b) Find the (implied) domain of

$$
f(x)=\sqrt{||x-3|-5|-1}
$$

and write your answer in interval notation.
7. (20 points) Let $f(x)=x^{2}-x$. Note that $f(3)=6$
(a) Find the slope of the line joining the points $(3,6)$ and $(3+h, f(3+h))$, where $h \neq 0$. Note that $(3+h, f(3+h))$ is a point on the graph of f.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .
(c) Replace the x with 3 in your answer to (b) to find $f^{\prime}(3)$.
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(3,6)$.
8. (12 points) Given two functions,

$$
g(x)=\left\{\begin{array}{cl}
2 x-1 & \text { if } 1<x<4 \\
4-x & \text { otherwise }
\end{array} \quad \text { and } \quad f(x)=\left\{\begin{array}{cl}
x^{2}+3 & \text { if } x \geq 1 \\
x^{2}-4 & \text { if } x<1
\end{array}\right.\right.
$$

Complete the following table.

x	$g(x)$	$f(x)$	$f \circ g(x)$	$g \circ f(x)$
-4	8	12	67	-8
-1				
0				
1				
2				
3				
3.5				
4				

