September 27, 2007
Name
The problems count as marked. The total number of points available is 139 . Throughout this test, show your work.

1. (40 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 4} \frac{\frac{2}{x}-\frac{1}{2}}{x-4}$

Solution: Find a common denominator and eliminate the common terms
to get $\lim _{x \rightarrow 4}-\frac{4-x}{4-x} \cdot \frac{1}{2 x}=-1 / 8$.
(b) $\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}$

Solution: Rationalize the numerator to get $\lim _{x \rightarrow 16} \frac{x-16}{(x-16)(\sqrt{x}+4)}=$ $\lim _{x \rightarrow 16} 1 /(\sqrt{x}+4)=1 / 8$.
(c) $\lim _{x \rightarrow 0} \frac{x^{3}+2 x^{2}}{x^{2}}$

Solution: Factor and eliminate the x^{2} to get

$$
\lim _{x \rightarrow 0} x+2=2
$$

(d) $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x+2}$

Solution: Factor $x^{3}+8=(x+2)\left(x^{2}-2 x+4\right)$ and eliminate the $x+2$ in both numerator and denominator to get $\lim _{x \rightarrow-2} x^{2}-2 x+4=12$.
(e) $\lim _{x \rightarrow \infty} \frac{11+5 x}{\sqrt{9 x^{2}-3}}$

Solution: $\lim _{x \rightarrow \infty} \frac{11+5 x}{\sqrt{9 x^{2}-3}}=\lim _{x \rightarrow \infty} \frac{11 / x+5 x / x}{\sqrt{9 x^{2} / x^{2}-3 / x^{2}}}=\frac{5}{3}$ because the degree of the denominator is essentially the same as that of the numerator.

For problems (f) through (k), let

$$
f(x)=\left\{\begin{array}{cl}
7-x & \text { if } x<0 \\
10 & \text { if } x=0 \\
(x+1)(x+7) & \text { if } 0 \leq x<3 \\
30 & \text { if } 3 \leq x
\end{array}\right.
$$

(f) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: 7
(g) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: 7
(h) $\lim _{x \rightarrow 0} f(x)$

Solution: 7
(i) $\lim _{x \rightarrow 3^{-}} f(x)$

Solution: 40
(j) $\lim _{x \rightarrow 3^{+}} f(x)$

Solution: 30
(k) $\lim _{x \rightarrow 3} f(x)$

Solution: DNE
2. (10 points) When $|2-4 \pi-3 \sqrt{2}|+|4 \sqrt{2}+8-2 \pi|+|6-6 \pi-\sqrt{8}|$ is expressed in the form $a+b \sqrt{2}+c \pi$, where a, b, and c are integers, what are the values of a, b, and c ? No points for a decimal approximation.
Solution: $|2-4 \pi-3 \sqrt{2}|+|4 \sqrt{2}+8-2 \pi|+|6-6 \pi-\sqrt{8}|=-(2-4 \pi-3 \sqrt{2})+$ $4 \sqrt{2}+8-2 \pi-(6-6 \pi-\sqrt{8})=-2+8-6+(3 \sqrt{2}+4 \sqrt{2}+2 \sqrt{2})+(4 \pi-2 \pi+6 \pi)=$ $9 \sqrt{2}+8 \pi$, so $a=0, b=9$ and $c=8$.
3. (21 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim _{x \rightarrow a^{-}} f(x)$	1	1	1	3	2	3
$\lim _{x \rightarrow a^{+}} f(x)$	1	2	1	3	2	3
$f(a)$	1	2	-1	1	4	3
$\lim _{x \rightarrow a^{-}} g(x)$	4	1	3	3	1	4
$\lim _{x \rightarrow a^{+}} g(x)$	1	2	0	3	1	4
$g(a)$	1	-1	3	DNE	DNE	4

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.
(a) $\lim _{x \rightarrow 0^{+}}[f(x)+g(x)]$

Solution: 4
(b) $\lim _{x \rightarrow 0^{-}}[f(x)+g(x)]$

Solution: 2
(c) $\lim _{x \rightarrow 2}[f(x)+g(x)]$

Solution: 6
(d) $(f+g)(4)$

Solution: $3+4=7$.
(e) $f \circ g \circ f(-1)$

Solution: $f \circ g \circ f(-1)=f \circ g(1)=f(3)=4$
(f) Find all points (in the table) at which f is continuous.

Solution: $x=-1$ and $x=4$.
(g) Find all points (in the table) at which g is continuous.

Solution: $x=4$.
4. (18 points) Find the (implied) domain of each of the functions given below. Write your answers in interval notation.
(a) $f(x)=\sqrt{(x-2)(x-3)}-\sqrt{(x-5)(x-7)}$.

Solution: We can think of this as two problems. Since f is the difference of the two functions, $h(x)=\sqrt{(x-2)(x-3)}$ and $k(x)=\sqrt{(x-5)(x-7)}$, we can find the domains of each of these and take the real numbers common to both domains. The domain D_{h} of the first one is all the real numbers except $(2,3)$ and the domain D_{k} of the second one is all the real numbers except $(5,7)$. So the domain D of f is $D=(-\infty, 2] \cup[3,5] \cup[7, \infty)$.
(b) $g(x)=\left(2 x^{2}+5 x-12\right)^{-1}$.

Solution: Note that $2 x^{2}+5 x-12$ factors into $(2 x-3)(x+4)$. Therefore the zeros of the denominator are $x=3 / 2$ and $x=-4$. The domain of g is therefore all real numbers except those two, namely $(-\infty,-4) \cup$ $(-4,3 / 2) \cup(3 / 2, \infty)$.
5. (25 points) Let $f(x)=\sqrt{2 x+1}$. Notice that $f(4)=\sqrt{9}=3$.
(a) Find the slope of the line joining the points $(4,3)$ and $(4+h, f(4+h))$, where $h \neq 0$. Note that $(4+h, f(4+h))$ is a point on the graph of f.
Solution: $\frac{\sqrt{2(4+h)+1}-3}{4+h-4}=\frac{\sqrt{2(4+h)+1}-3}{h}$.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.

Solution: see below
(c) Finally compute the limit as h approaches 0 to find $f^{\prime}(a)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the numerator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{2(a+h)+1}-\sqrt{2 a+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2(a+h)+1}-\sqrt{2 a+1}}{h} \cdot \frac{\sqrt{2(a+h)+1}+\sqrt{2 a+1}}{\sqrt{2(a+h)+1}+\sqrt{2 a+1}} \\
& =\lim _{h \rightarrow 0} \frac{2(a+h)+1-(2 a+1)}{h(\sqrt{2(a+h)+1}+\sqrt{2 a+1})} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2(a+h)+1}+\sqrt{2 a+1})} \\
& =\lim _{h \rightarrow 0} \frac{2}{(\sqrt{2(a+h)+1}+\sqrt{2 a+1})} \\
& =\frac{2}{2(\sqrt{2 a+1})}=\frac{1}{\sqrt{2 a+1}}
\end{aligned}
$$

(d) Replace the a with 4 to find $f^{\prime}(4)$.

Solution: $f^{\prime}(4)=2 \cdot 9^{-1 / 2} / 2=1 / 3$
6. (32 points) Given three functions, $h(x)=2 x$,

$$
g(x)=\left\{\begin{array}{cl}
x^{2}+1 & \text { if } x>3 \\
4-x & \text { if } x \leq 3
\end{array} \quad \text { and } \quad f(x)= \begin{cases}\sqrt{x+3} & \text { if } x \geq 2 \\
2 x-1 & \text { if } x<2\end{cases}\right.
$$

Note that $f \circ g \circ h(-2)=f \circ g(h(-2))=f \circ g(-4)=f(8)=\sqrt{11}$.
(a) Complete the following table.

x	$h(x)$	$g \circ h(x)$	$f \circ g \circ h(x)$
-2	-4	8	$\sqrt{11}$
$3 / 2$			
	10		
		10	
			3

Solution:

x	$h(x)$	$g \circ h(x)$	$f \circ g \circ h(x)$
-2	-4	8	$\sqrt{11}$
$3 / 2$	3	1	1
5	10	101	$\sqrt{104}$
-3	-6	10	$\sqrt{13}$
-1	-2	6	3

(b) Find all solutions to $f \circ g \circ h(x)=3$.

Solution: $g(2 x)$ could be 6 since $f(6)=\sqrt{9}=3$. This equation leads to $2 x=-2$ and $x=-1$.
(c) Find a symbolic representation of $g \circ h(x)$.

Solution:

$$
g \circ h(x)=\left\{\begin{array}{cc}
(2 x)^{2}+1 & \text { if } 2 x>3 \\
4-2 x & \text { if } 2 x \leq 3
\end{array}\right.
$$

and this simplifies to

$$
g \circ h(x)=\left\{\begin{array}{cl}
4 x^{2}+1 & \text { if } x>3 / 2 \\
4-2 x & \text { if } x \leq 3 / 2
\end{array}\right.
$$

