February 13, $2007 \quad$ Name
The problems count as marked. The total number of points available is 135.
Throughout this test, show your work.

1. (40 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 0} \frac{x^{4}-x^{2}}{x^{2}}$
(b) $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-1}$
(c) $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-3 x-10}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}-3}}{11-5 x}$

For problems (e) through (j), let

$$
f(x)=\left\{\begin{array}{cl}
7-x & \text { if } x>2 \\
10 & \text { if } x=2 \\
2 x+1 & \text { if } 0 \leq x<2 \\
-1 & \text { if } x<0
\end{array}\right.
$$

(e) $\lim _{x \rightarrow 0^{-}} f(x)$
(f) $\lim _{x \rightarrow 0^{+}} f(x)$
(g) $\lim _{x \rightarrow 0} f(x)$
(h) $\lim _{x \rightarrow 2^{-}} f(x)$
(i) $\lim _{x \rightarrow 2^{+}} f(x)$
(j) $\lim _{x \rightarrow 2} f(x)$
2. (21 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim _{x \rightarrow a^{-}} f(x)$	DNE	1	1	4	2	3
$\lim _{x \rightarrow a^{+}} f(x)$	1	2	1	3	2	DNE
$f(a)$	1	2	-1	1	2	3
$\lim _{x \rightarrow a^{-}} g(x)$	4	1	3	3	1	0
$\lim _{x \rightarrow a^{+}} g(x)$	1	2	0	3	1	DNE
$g(a)$	1	-1	3	3	DNE	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.
(a) $\lim _{x \rightarrow 2^{+}}[f(x)+g(x)]$
(b) $\lim _{x \rightarrow 2^{-}}[f(x)+g(x)]$
(c) $\lim _{x \rightarrow 2}[f(x)+g(x)]$
(d) $(f+g)(4)$
(e) $f \circ g \circ f(-1)$
(f) Find all points (in the table) at which f is continuous.
(g) Find all points (in the table) at which g is continuous.
3. (7 points) Compute the exact value of $|2-4 \pi|+|8-2 \pi|+|6-6 \pi|$. No points for a decimal approximation.
4. (10 points) Find the (implied) domain of

$$
f(x)=\sqrt{(x-2)\left(x^{2}-9\right)},
$$

and write your answer in interval notation.
5. (25 points) Let $f(x)=\sqrt{3 x-2}$. Notice that $f(6)=\sqrt{18-2}=4$.
(a) Find the slope of the line joining the points $(6,4)$ and $(6+h, f(6+h))$, where $h \neq 0$. Note that $(6+h, f(6+h))$ is a point on the graph of f.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.
(c) Finally compute the limit as h approaches 0 to find $f^{\prime}(a)$.
(d) Replace the a with 6 to find $f^{\prime}(6)$.
6. (32 points) Given three functions, $h(x)=2 x$,

$$
g(x)=\left\{\begin{array}{cl}
3 x-1 & \text { if } x>6 \\
4-x & \text { if } x \leq 6
\end{array} \quad \text { and } \quad f(x)=\left\{\begin{array}{cl}
\sqrt{x+3} & \text { if } x \geq 1 \\
x^{2} & \text { if } x<1
\end{array}\right.\right.
$$

Note that $f \circ g \circ h(-2)=f \circ g(h(-2))=f \circ g(-4)=f(8)=\sqrt{11}$.
(a) Complete the following table.

x	$h(x)$	$g \circ h(x)$	$f \circ g \circ h(x)$
-2	-4	8	$\sqrt{11}$
4			
	10		
		-2	
			0

(b) Find all solutions to $f \circ g \circ h(x)=3$.
(c) Find a symbolic representation of $g \circ h(x)$.

