September 28, 2006
Name
The problems count as marked. The total number of points available is 146. Throughout this test, show your work.

1. (27 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Use 'DNE' if the limit does not exist.

(a) $\lim _{x \rightarrow-1^{-}} F(x)$

Solution: 1
(b) $\lim _{x \rightarrow-1^{+}} F(x)$

Solution: 1
(c) $\lim _{x \rightarrow-1} F(x)$

Solution: 1
(d) $F(-1)$

Solution: 2
(e) $\lim _{x \rightarrow 1^{-}} F(x)$

Solution: 2
(f) $\lim _{x \rightarrow 1^{+}} F(x)$

Solution: 3
(g) $\lim _{x \rightarrow 1} F(x)$

Solution: DNE
(h) $\lim _{x \rightarrow 3} F(x)$

Solution: - 2
(i) $F(3)$

Solution: DNE
2. (5 points) Evaluate the limit

$$
\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-3 x-10}
$$

Solution: Factor and cancel the $x+2 \mathrm{~s}$ to get

$$
\lim _{x \rightarrow 2} \frac{1}{x-5}=-1 / 7
$$

3. (5 points) Evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{x^{4}-x^{2}}{x^{2}-1}
$$

Solution: Factor and eliminate the $x^{2}-1$ to get

$$
\lim _{x \rightarrow 1} x^{2}=1
$$

4. (5 points) Evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{\frac{1}{x}-\frac{1}{1}}{x-1}
$$

Solution: Do the fraction arithmetic to get limit $=-1$.
5. (18 points)

$$
f(x)=\left\{\begin{array}{cl}
13 & \text { if } x>8 \\
10 & \text { if } x=8 \\
-x+13 & \text { if } 0 \leq x<8 \\
13 & \text { if } x<0
\end{array}\right.
$$

Sketch the graph of this function and find following limits if they exist (if not, enter DNE).
(a) $\lim _{x \rightarrow 8^{-}} f(x)$

Solution: 5
(b) $\lim _{x \rightarrow 8^{+}} f(x)$

Solution: 13
(c) $\lim _{x \rightarrow 8} f(x)$

Solution: DNE
(d) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: 13
(e) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: 13
(f) $\lim _{x \rightarrow 0} f(x)$

Solution: 13

Solution:

6. (16 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim _{x \rightarrow a^{-}} f(x)$	DNE	1	1	4	2	3
$\lim _{x \rightarrow a^{+}} f(x)$	1	2	1	3	2	DNE
$f(a)$	1	2	-1	1	2	3
$\lim _{x \rightarrow a^{-}} g(x)$	4	1	3	3	1	0
$\lim _{x \rightarrow a^{+}} g(x)$	1	2	0	3	1	DNE
$g(a)$	1	-1	3	3	DNE	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.
(a) $\lim _{x \rightarrow 3}[f(x)+g(x)]$

Solution: 3
(b) $f(1) g(1)$

Solution: -3
(c) Find all points (in the table) at which g is continuous.

Solution: $x=2$
(d) Find all points (in the table) at which f is continuous.

Solution: $x=3$
7. (10 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval $[a, b]$ and M is a number between $f(a)$ and $f(b)$, then there exists a number c satisfying $a \leq c \leq b$ and $f(c)=M$. For this problem let $f(x)=\sqrt{4 x-3}$ and let $[a, b]=[1,7]$. Finally, suppose $M=2$. Find the number c whose existence is guaranteed by IVT.
Solution: We need to solve the equation $\sqrt{4 x-3}=2$ for x. Square both sides to get $4 x-3=4$, from which it follows that $x=7 / 4$.
8. (8 points) Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-3}}{11-10 x}
$$

Solution: Divide the numerator and denominator by x to get $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-3}}{11-10 x}=$ $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2} / x^{2}-3 / x^{2}}}{11 / x-10 x / x}=2 /(-10)=-1 / 5$ because the degree of the denominator is the same as that of the numerator.
9. (6 points) Compute the exact value of $|8 \pi-20 \sqrt{2}|+|8 \pi-25|-|6 \sqrt{2}-10|$. No points for a decimal approximation.
Solution: $|8 \pi-20 \sqrt{2}|+|8 \pi-25|-|6 \sqrt{2}-10|=20 \sqrt{2}-8 \pi+8 \pi-25-6 \sqrt{2}-10=$ $26 \sqrt{2}-35$, because $8 \pi-20 \sqrt{2}<0,8 \pi-25>0$ and $6 \sqrt{2}-10<0$.
10. (15 points) Suppose

$$
f(x)= \begin{cases}x-3 & \text { if } x<1 \\ 2 x+2 & \text { if } x>1\end{cases}
$$

and $g(x)=x^{2}+5$. Find the two composite functions
(a) $f \circ g(x)$

Solution: $f \circ g(x)=2 x^{2}+12$.
(b) $g \circ f(x)$

Solution: $g \circ f(x)=\left\{\begin{array}{ll}x^{2}-6 x+14 & \text { if } x<1 \\ 4 x^{2}+8 x+9 & \text { if } x>1\end{array}\right.$.
11. (6 points) Find the (implied) domain of

$$
f(x)=\frac{\sqrt{x-2}}{x^{2}-9}
$$

and write your answer in interval notation.
Solution: The domain D includes all real numbers greater than or equal to 2 except 3 , which must be eliminated because it makes the denominator zero. Thus, $D=[2,3) \cup(3, \infty)$.
12. (15 points) Let $f(x)=\sqrt{2 x+1}$.
(a) Find the slope of the line joining the points $(4,3)$ and $(x, f(x))$, where $x \neq 4$.
Solution: $\frac{\sqrt{2 x-1}-3}{x-5}$.
(b) Compute $f(a+h), f(a)$, and finally $\frac{f(a+h)-f(a)}{h}$.

Solution:

(c) Replace the a with 4 and take the limit as h approaches 0 . You have just found $f^{\prime}(4)$.

Solution:

(d) Use the information found in (c) to write an equation for the line tangent to the graph of f at the point $(4,3)$.
Solution: $y-3=(1 / 3)(x-5)$, so $y=x / 3+4 / 3$.
13. Bonus problem. (10 points) How many points in the plane satisfy both
a. $|x|=4$ and
b. $x^{2}-2 x+y^{2}-14 y=-25$.

Solution: The answer is 3 . Complete the square to see that the second equation is a circle $(x-1)^{2}+(y-7)^{2}=5^{2}$, so the points for which $|x|=4$ can be split into two cases:
(a) $x=-4:(-5)^{2}+(y-7)^{2}=25 \Rightarrow(y-7)^{2}=0 \Rightarrow y=7$ and
(b) $x=4:(3)^{2}+(y-7)^{2}=25 \Rightarrow(y-7)^{2}=16 \Rightarrow y=3$ or $y=11$.

