September 28, 2006 Name

The problems count as marked. The total number of points available is 146. Throughout this test, **show your work**.

1. (27 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Use 'DNE' if the limit does not exist.

- (b) $\lim_{x \to -1^+} F(x)$ Solution: 1
- (c) $\lim_{x \to -1} F(x)$ Solution: 1
- (d) F(-1)Solution: 2
- (e) $\lim_{x \to 1^{-}} F(x)$ Solution: 2

- (f) $\lim_{x \to 1^+} F(x)$ Solution: 3
- (g) $\lim_{x \to 1} F(x)$ Solution: DNE
- (h) $\lim_{x \to 3} F(x)$ Solution: -2
- (i) F(3)Solution: DNE

2. (5 points) Evaluate the limit

$$\lim_{x \to -2} \frac{x+2}{x^2 - 3x - 10}$$

Solution: Factor and cancel the x + 2s to get

$$\lim_{x \to 2} \frac{1}{x - 5} = -1/7$$

3. (5 points) Evaluate the limit

$$\lim_{x \to 1} \frac{x^4 - x^2}{x^2 - 1}$$

Solution: Factor and eliminate the $x^2 - 1$ to get

$$\lim_{x \to 1} x^2 = 1$$

4. (5 points) Evaluate the limit

$$\lim_{x \to 1} \frac{\frac{1}{x} - \frac{1}{1}}{x - 1}$$

Solution: Do the fraction arithmetic to get limit = -1.

5. (18 points)

$$f(x) = \begin{cases} 13 & \text{if } x > 8\\ 10 & \text{if } x = 8\\ -x + 13 & \text{if } 0 \le x < 8\\ 13 & \text{if } x < 0 \end{cases}$$

Sketch the graph of this function and find following limits if they exist (if not, enter DNE).

- (a) $\lim_{x \to 8^{-}} f(x)$ Solution: 5
- (b) $\lim_{x \to 8^+} f(x)$ Solution: 13
- (c) $\lim_{x\to 8} f(x)$ Solution: DNE
- (d) $\lim_{x \to 0^-} f(x)$ Solution: 13
- (e) $\lim_{x \to 0^+} f(x)$ Solution: 13
- (f) $\lim_{x \to 0} f(x)$ Solution: 13

Solution:

6. (16 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim_{x \to a^-} f(x)$	DNE	1	1	4	2	3
$\lim_{x \to a^+} f(x)$	1	2	1	3	2	DNE
f(a)	1	2	-1	1	2	3
$\lim_{x \to a^{-}} g(x)$	4	1	3	3	1	0
$\lim_{x \to a^+} g(x)$	1	2	0	3	1	DNE
g(a)	1	-1	3	3	DNE	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.

- (a) $\lim_{x\to 3} [f(x) + g(x)]$ Solution: 3
- (b) f(1)g(1)Solution: -3
- (c) Find all points (in the table) at which g is continuous. Solution: x = 2
- (d) Find all points (in the table) at which f is continuous. Solution: x = 3
- 7. (10 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval [a, b] and M is a number between f(a) and f(b), then there exists a number c satisfying $a \le c \le b$ and f(c) = M. For this problem let $f(x) = \sqrt{4x 3}$ and let [a, b] = [1, 7]. Finally, suppose M = 2. Find the number c whose existence is guaranteed by IVT.

Solution: We need to solve the equation $\sqrt{4x-3} = 2$ for x. Square both sides to get 4x - 3 = 4, from which it follows that x = 7/4.

8. (8 points) Evaluate the limit

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 3}}{11 - 10x}$$

Solution: Divide the numerator and denominator by x to get $\lim_{x\to\infty} \frac{\sqrt{4x^2-3}}{11-10x} = \lim_{x\to\infty} \frac{\sqrt{4x^2/x^2-3/x^2}}{11/x-10x/x} = 2/(-10) = -1/5$ because the degree of the denominator is the same as that of the numerator.

9. (6 points) Compute the exact value of $|8\pi - 20\sqrt{2}| + |8\pi - 25| - |6\sqrt{2} - 10|$. No points for a decimal approximation.

Solution: $|8\pi - 20\sqrt{2}| + |8\pi - 25| - |6\sqrt{2} - 10| = 20\sqrt{2} - 8\pi + 8\pi - 25 - 6\sqrt{2} - 10 = 26\sqrt{2} - 35$, because $8\pi - 20\sqrt{2} < 0$, $8\pi - 25 > 0$ and $6\sqrt{2} - 10 < 0$.

10. (15 points) Suppose

$$f(x) = \begin{cases} x - 3 & \text{if } x < 1\\ 2x + 2 & \text{if } x > 1 \end{cases}$$

and $g(x) = x^2 + 5$. Find the two composite functions

- (a) $f \circ g(x)$ **Solution:** $f \circ g(x) = 2x^2 + 12$. (b) $g \circ f(x)$ **Solution:** $g \circ f(x) = \begin{cases} x^2 - 6x + 14 & \text{if } x < 1 \\ 4x^2 + 8x + 9 & \text{if } x > 1 \end{cases}$.
- 11. (6 points) Find the (implied) domain of

$$f(x) = \frac{\sqrt{x-2}}{x^2 - 9},$$

and write your answer in interval notation.

Solution: The domain D includes all real numbers greater than or equal to 2 except 3, which must be eliminated because it makes the denominator zero. Thus, $D = [2, 3) \cup (3, \infty)$.

- 12. (15 points) Let $f(x) = \sqrt{2x+1}$.
 - (a) Find the slope of the line joining the points (4,3) and (x, f(x)), where x ≠ 4.
 Solution: √2x-1-3/x-5.
 - (b) Compute f(a+h), f(a), and finally $\frac{f(a+h)-f(a)}{h}$. Solution:
 - (c) Replace the *a* with 4 and take the limit as *h* approaches 0. You have just found f'(4).

Solution:

- (d) Use the information found in (c) to write an equation for the line tangent to the graph of f at the point (4,3).
 Solution: y 3 = (1/3)(x 5), so y = x/3 + 4/3.
- 13. Bonus problem. (10 points) How many points in the plane satisfy both
 - a. |x| = 4 and
 - b. $x^2 2x + y^2 14y = -25$.

Solution: The answer is 3. Complete the square to see that the second equation is a circle $(x - 1)^2 + (y - 7)^2 = 5^2$, so the points for which |x| = 4 can be split into two cases:

(a)
$$x = -4$$
: $(-5)^2 + (y - 7)^2 = 25 \Rightarrow (y - 7)^2 = 0 \Rightarrow y = 7$ and
(b) $x = 4$: $(3)^2 + (y - 7)^2 = 25 \Rightarrow (y - 7)^2 = 16 \Rightarrow y = 3$ or $y = 11$.

