
September 28, 2006 Name

The problems count as marked. The total number of points available is 146. Throughout this test, **show your work**.

1. (27 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Use 'DNE' if the limit does not exist.

- (a) $\lim_{x \to -1^-} F(x)$
- (b) $\lim_{x \to -1^+} F(x)$
- (c) $\lim_{x \to -1} F(x)$
- (d) F(-1)
- (e) $\lim_{x \to 1^-} F(x)$
- (f) $\lim_{x \to 1^+} F(x)$
- (g) $\lim_{x \to 1} F(x)$
- (h) $\lim_{x \to 3} F(x)$

(i) F(3)

2. (5 points) Evaluate the limit

$$\lim_{x \to -2} \frac{x+2}{x^2 - 3x - 10}$$

3. (5 points) Evaluate the limit

$$\lim_{x \to 1} \frac{x^4 - x^2}{x^2 - 1}$$

4. (5 points) Evaluate the limit

$$\lim_{x \to 1} \frac{\frac{1}{x} - \frac{1}{1}}{x - 1}$$

5. (18 points)

$$f(x) = \begin{cases} 13 & \text{if } x > 8\\ 10 & \text{if } x = 8\\ -x + 13 & \text{if } 0 \le x < 8\\ 13 & \text{if } x < 0 \end{cases}$$

Sketch the graph of this function and find following limits if they exist (if not, enter DNE).

- (a) $\lim_{x \to 8^-} f(x)$
- (b) $\lim_{x \to 8^+} f(x)$
- (c) $\lim_{x \to 8} f(x)$
- (d) $\lim_{x \to 0^-} f(x)$
- (e) $\lim_{x \to 0^+} f(x)$
- (f) $\lim_{x \to 0} f(x)$
- 6. (16 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim_{x \to a^-} f(x)$	DNE	1	1	4	2	3
$\lim_{x \to a^+} f(x)$	1	2	1	3	2	DNE
f(a)	1	2	-1	1	2	3
$\lim_{x \to a^{-}} g(x)$	4	1	3	3	1	0
$\lim_{x \to a^+} g(x)$	1	2	0	3	1	DNE
g(a)	1	-1	3	3	DNE	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.

- (a) $\lim_{x \to 3} [f(x) + g(x)]$
- (b) f(1)g(1)
- (c) Find all points (in the table) at which g is continuous.
- (d) Find all points (in the table) at which f is continuous.
- 7. (10 points) Intermediate Value Theorem. Recall that the IVT asserts the following: If f is a continuous function on the interval [a, b] and M is a number between f(a) and f(b), then there exists a number c satisfying $a \le c \le b$ and f(c) = M. For this problem let $f(x) = \sqrt{4x 3}$ and let [a, b] = [1, 7]. Finally, suppose M = 2. Find the number c whose existence is guaranteed by IVT.
- 8. (8 points) Evaluate the limit

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 3}}{11 - 10x}$$

- 9. (6 points) Compute the exact value of $|8\pi 20\sqrt{2}| + |8\pi 25| |6\sqrt{2} 10|$. No points for a decimal approximation.
- 10. (15 points) Suppose

$$f(x) = \begin{cases} x - 3 & \text{if } x < 1\\ 2x + 2 & \text{if } x > 1 \end{cases}$$

and $g(x) = x^2 + 5$. Find the two composite functions

(a) $f \circ g(x)$

(b) $g \circ f(x)$

11. (6 points) Find the (implied) domain of

$$f(x) = \frac{\sqrt{x-2}}{x^2 - 9},$$

and write your answer in interval notation.

- 12. (15 points) Let $f(x) = \sqrt{2x+1}$.
 - (a) Find the slope of the line joining the points (4,3) and (x, f(x)), where $x \neq 4$.
 - (b) Compute f(a+h), f(a), and finally $\frac{f(a+h)-f(a)}{h}$.
 - (c) Replace the *a* with 4 and take the limit as *h* approaches 0. You have just found f'(4).
 - (d) Use the information found in (c) to write an equation for the line tangent to the graph of f at the point (4, 3).
- 13. Bonus problem. (10 points) How many points in the plane satisfy both

4

- a. |x| = 4 and
- b. $x^2 2x + y^2 14y = -25$.