July 14, 2005
Name
The first 6 problems count 6 points each and the rest count as marked. The total number of points available is 137 . Throughout this test, show your work.

1. What is the degree of the polynomial $p(x)=\left(x^{2}-1\right)^{3}\left(x^{5}-7\right)$?
2. Let P denote the midpoint of the line segment joining $(4,3)$ and $(-6,9)$. What is the distance from P to the point $(0,3)$?
3. Compute the exact value of $|4 \pi-5 \sqrt{2}|+|4 \pi-13|-|5 \sqrt{2}-8|$.
4. Find the (implied) domain of

$$
f(x)=\frac{\sqrt{x-6}}{(x-2)(x-9)}
$$

and write your answer in interval notation.
5. Find all the x-intercepts of the function

$$
t(x)=(2 x-1)^{3}(x-1)^{2}-(2 x-1)^{2}(x-1)^{3} .
$$

6. Find an equation for a line perpendicular to the line $3 x-4 y=7$ and which goes through the point $(-2,-5)$.
7. (8 points) The line tangent to the graph of $y=e^{4 x}$ at the point $(0,1)$ has slope 4. What is the x-intercept of the line? Hint: recall the x-intercept is the point where the line crosses the x-axis.
8. (48 points) Compute each of the following limits.
(a) Let $f(x)= \begin{cases}x+2 & \text { if } x<2 \\ 3 & \text { if } x=2 \\ 8-x^{2} & \text { if } x>2\end{cases}$
$\lim _{x \rightarrow 2} f(x)$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-3 x}{x}$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}+x-12}$
(d) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$
(e) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(f) $\lim _{x \rightarrow 1} \frac{\frac{1}{3 x}-\frac{1}{3}}{x-1}$
(g) $\lim _{\substack{h \rightarrow 0 \\(3+h)^{3} .}} \frac{(3+h)^{3}-27}{h}$. Hint: you will have to work out the expanded form of
(h) $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{(1-2 x)^{2}}$
9. (15 points) Let $k(x)=x^{2}-x$. Evaluate and simplify $\frac{k(x+h)-k(x)}{h}$. Then find the limit of the expression as h approaches 0 .
10. (30 points) Consider the rational function $r(x)=\frac{(x+1)^{2}(2 x+5)}{4 x^{3}-16 x}$.
(a) Estimate the value $r(1000)$. Does $r(x)$ have a horizontal asymptote? Determine the degrees of the numerator n and the denominator m.
(b) Factor the denominator completely. Determine the vertical asymptotes.
(c) Use the Test Interval Technique to solve the inequality $r(x) \geq 0$. Be sure to show your work, including the matrix of values of the factors at the test points.
