September 24, 2004
Name
The first 6 problems count 6 points each and the rest count as marked. The total number of points available is 137 . Throughout this test, show your work.

1. What is the degree of the polynomial $p(x)=\left(x^{3}-1\right)^{3}\left(x^{2}+7\right)$?

Solution: $\left(x^{3}-1\right)^{3}$ has degree 9 and $\left(x^{2}+7\right)$ has degree 2 , so $p(x)$ has degree $9+2=11$.
2. Let P denote the midpoint of the line segment joining $(2,3)$ and $(-6,9)$. What is the distance from P to the point $(0,3)$?
Solution: $P=\left(\frac{2-6}{2}, \frac{3+9}{2}\right)=(-2,6)$ so the distance is $d=\sqrt{(0+2)^{2}+(3-6)^{2}}=$ $\sqrt{13}$.
3. Compute the exact value of $|\pi+\sqrt{3}-5|-|2 \pi-\sqrt{3}+1|$.

Solution: $|\pi+\sqrt{3}-5|=5-\pi-\sqrt{3}$ and $|2 \pi-\sqrt{3}+1|=2 \pi+1-\sqrt{3}$, so the difference is $5-\pi-\sqrt{3}-(2 \pi+1-\sqrt{3})=4-3 \pi$.
4. Find the (implied) domain of

$$
f(x)=\frac{\sqrt{x-2}}{(x-5)(x-7)}
$$

and write your answer in interval notation.
Solution: The domain D includes all real numbers greater than or equal to 2 except 7 and 5 , which must be eliminated because they make the denominator zero. Thus, $D=[2,5) \cup(5,7) \cup(7, \infty)$.
5. Find all the x-intercepts of the function

$$
t(x)=(2 x-1)^{3}(x-1)^{2}-(2 x-1)^{2}(x-1)^{3} .
$$

Solution: Factor the common stuff out to get $(2 x-1)^{2}(x-1)^{2}[2 x-1-(x-1)]$. Setting each of the three factors to zero yields $x=1 / 2, x=1$, and $x=0$.
6. Find an equation for a line perpendicular to the line $3 x-4 y=7$ and which goes through the point $(-2,-3)$.
Solution: The given line has slope $3 / 4$ so the one perpendicular has slope $-4 / 3$. Hence $y+3=(-4 / 3)(x+2)$. Thus $y=-4 x / 3-17 / 3$.
7. (8 points) The line tangent to the graph of $y=e^{3 x}$ at the point $(0,1)$ has slope 3 . What is the x-intercept of the line?
Solution: The line is $y-1=3(x-0)$, so the x-intercept is $-1 / 3$.
8. (48 points) Compute each of the following limits.
(a) Let $f(x)= \begin{cases}x+2 & \text { if } x<1 \\ 1 & \text { if } x=1 \\ 4-x^{2} & \text { if } x>1\end{cases}$
$\lim _{x \rightarrow 1} f(x)$
Solution: 3. Use the blotter test to see that $f(x)$ is close to 3 when x is close (but not equal) to 1. Alternatively, $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x+2=3$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4-x^{2}=3$, so the limit is 3 .
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x}$

Solution: Factor the numerator and cancel out the factor x to get $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x}=-2$.
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}+x-12}$

Solution: Factor and eliminate the common factor $x-3$, then set $x=3$ to get $3 /(3+4)=3 / 7$.
(d) $\lim _{x \rightarrow 2}\left|x^{2}-\sqrt{16 x-7}\right|$

Solution: Just replace all the x 's with the number 2 to get $\left|2^{2}-\sqrt{16 \cdot 2-7}\right|=$ $|4-5|=1$.
(e) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

Solution: Factor the denominator and cancel out the factor $x-1$ to get $\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+x+1}=2 / 3$.
(f) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$

Solution: Rationalize the denominator to get $\frac{x-9}{\sqrt{x}-3}=\frac{(x-9)(\sqrt{x}+3)}{x-9}$ which has limit 6 as x approaches 9 .
(g) $\lim _{x \rightarrow 1} \frac{\frac{1}{3 x}-\frac{1}{3}}{x-1}$

Solution: Do the fraction arithmetic to get $\frac{\frac{1}{3 x}-\frac{1}{3}}{x-1}=\frac{\frac{1-x}{3 x}}{\frac{x-1}{1}}=-\frac{1}{3 x}$ which has limit $-1 / 3$ as x approaches 1 .
(h) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{(1-x)^{2}}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just $2 / 1=2$.
9. (15 points) Let $k(x)=x^{2}-x$. Evaluate and simplify $\frac{k(x+h)-k(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-(x+h)-\left(x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 \cdot x h+h^{2}-x-h-x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{+2 \cdot x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h}=2 x-1 .
\end{aligned}
$$

10. (30 points) Consider the rational function $r(x)=\frac{(x+1)^{2}(2 x+5)}{4 x^{3}-16 x}$.
(a) Estimate the value $r(1000)$. Does $r(x)$ have a horizontal asymptote?

Determine the degrees of the numerator n and the denominator m.
Solution: Yes, $r(1000) \approx 1 / 2$ because the horizontal asymptote is $y=$ $1 / 2$. Note that $m=n=3$ for this rational function. The horizontal line whose value is the ratio of the coefficients of x^{3} in the numerator and denominator, $y=2 / 4=1 / 2$.
(b) Factor the denominator completely. Determine the vertical asymptotes.

Solution: $4 x^{3}-16 x=x\left(4 x^{2}-16\right)=x(x-2)(x+2)$. Thus the vertical asymptotes are $x=0, x=2$, and $x=-2$.
(c) Use the Test Interval Technique to solve the inequality $r(x) \geq 0$. Be sure to show your work, including the matrix of values of the factors at the test points.
Solution: There are five branch points, two from the numerator, $x=$ $-5 / 2$ and $x=-1$, and three from the denominator, $x=0, x=2$, and $x=-2$. As we move past each of these among the six intervals determined by the branch points we find sign changes at all except the -1 (why?). So the answer is $(-\infty,-5 / 2) \cup(-2,-1) \cup(-1,0) \cup(2, \infty)$ plus the numbers $x=-5 / 2$ and $x=-1$. So we can write the answer as $(-\infty,-5 / 2] \cup(-2,0) \cup(2, \infty)$.

