February 13, 2004

Name

The first 12 problems count 7 points each and the final one counts 40 points. The total number of points available is 124 . Throughout this test, show your work.

1. What is the degree of the polynomial $p(x)=\left(x^{2}-1\right)^{3}\left(x^{3}+7\right)$?

Solution: $\left(x^{2}-1\right)^{3}$ has degree 6 and $\left(x^{3}+7\right)$ has degree 3 , so $p(x)$ has degree $6+3=9$.
2. Let P denote the midpoint of the line segment joining $(2,3)$ and $(8,11)$. What is the distance from P to the point $(-2,3)$?
Solution: $P=\left(\frac{2+8}{2}, \frac{3+11}{2}\right)=(5,7)$ so the distance is $d=\sqrt{(5+2)^{2}+(7-3)^{2}}=$ $\sqrt{49+16}=\sqrt{65}$.
3. Find the (implied) domain of

$$
f(x)=\frac{\sqrt{x-4}}{x-7}
$$

and write your answer in interval notation.
Solution: The domain D includes all real numbers greater than or equal to 4 except 7 , which must be eliminated because it makes the denominator zero. Thus, $D=[4,7) \cup(7, \infty)$.
4. Find all the x-intercepts of the function

$$
t(x)=(2 x-1)^{3}(x+1)^{2}-(2 x-1)^{2}(x+1)^{3} .
$$

Solution: Factor the common stuff out to get $(2 x-1)^{2}(x+1)^{2}[2 x-1-(x+1)]$. Setting each of the three factors to zero yields $x=1 / 2, x=-1$, and $x=2$.
5. The line tangent to the graph of $y=e^{2 x}$ at the point $(0,1)$ has slope 2 . What is the x-intercept of the line?
Solution: The line is $y-1=2(x-0)$ so the x-intercept is $-1 / 2$.
6. Consider the rational function $k(x)=\frac{(2 x+1)^{2}(x+5)}{3 x^{3}-5 x^{2}}$. Estimate the value $k(1000)$. Does k have a horizontal asymptote? Discuss.
Solution: Yes, $k(1000) \cong 1.34$ and the horizontal asymptote is the horizontal line whose value is the ratio of the coefficients of x^{3} in the numerator and denominator, $y=4 / 3$
7. Find an equation for a line perpendicular to the line $3 x-4 y=7$ and which goes through the point $(-2,-3)$.
Solution: The given line has slope $3 / 4$ so the one perpendicular has slope $-4 / 3$. Hence $y+3=(-4 / 3)(x+2)$. Thus $y=-4 x / 3-17 / 3$.
8. Let $k(x)=x^{2}-x$. Evaluate and simplify $\frac{k(x+h)-k(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
k^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{k(x+h)-k(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-(x+h)-\left(x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 \cdot x h+h^{2}-x-h-x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{+2 \cdot x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h}=2 x-1 .
\end{aligned}
$$

9. Suppose the functions f and g are given completely by the table of values shown.

x	$f(x)$	x	$g(x)$
0	2	0	5
1	7		1
2	5		7
3		2	4
4		3	2
4	3		4
5	6		6
6	3		
6		6	1
7	4		7
	0		

10. What is $f \circ g \circ f(2)$?

Solution: Note that $f(2)=5, g(5)=3$, and $f(3)=1$, so $f \circ g \circ f(2)=1$.
11. Solve $(f \circ g)(x)=7$?

Solution: Note that $g(x)$ must be 1 , so $x=6$.
12. (10 points) The supply and demand curves are given below for digital cameras at XYZ Distributors, where x represents the number of units and p the price. Find the equilibrium quantity and price. Demand: $p=-x^{2}-2 x+100$ and Supply: $p=10 x+55$.

Solution: Solve $-x^{2}-2 x+100=10 x+55$ by solving the quadratic $-x^{2}-$ $12 x+45=0$ to get two solutions, $x=3$ and $x=-15$, the later of which is extraneous. Thus $x=3$ and $p=85$.
13. (40 points) Compute each of the following limits.
(a) Let $f(x)= \begin{cases}x+2 & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}$
$\lim _{x \rightarrow 1} f(x)$
Solution: 3. Use the blotter test to see that $f(x)$ is close to 3 when x is close (but not equal) to 1 .
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x}$

Solution: Factor the numerator and cancel out the factor x to get $\lim _{x \rightarrow 0}=$ -2 .
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}+x-12}$

Solution: Factor and eliminate the common factor $x-3$, then set $x=3$ to get $3 /(3+4)=3 / 7$.
(d) $\lim _{x \rightarrow 2}\left|x^{2}-\sqrt{16 x-7}\right|$

Solution: Just replace all the x 's with the number 2 to get $\left|2^{2}-\sqrt{16 \cdot 2-7}\right|=$ $|4-5|=1$.
(e) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

Solution: Factor the denominator and cancel out the factor $x-1$ to get $\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+x+1}=2 / 3$.
(f) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$

Solution: Rationalize the denominator to get $\frac{x-9}{\sqrt{x}-3}=\frac{(x-9)(\sqrt{x}+3)}{x-9}$ which has limit 6 as x approaches 9 .
(g) $\lim _{x \rightarrow 1} \frac{\frac{1}{3 x}-\frac{1}{3}}{x-1}$

Solution: Do the fraction arithmetic to get $\frac{\frac{1}{3 x}-\frac{1}{3}}{x-1}=\frac{\frac{1-x}{3 x}}{\frac{3-1}{1}}=-\frac{1}{3 x}$ which has limit $-1 / 3$ as x approaches 1 .
(h) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{(1-x)^{2}}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just $2 / 1=2$.

