The first 12 problems count 7 points each and the final one counts 40 points. The total number of points available is 124. Throughout this test, **show your work**.

- 1. What is the degree of the polynomial $p(x) = (x^2 1)^3(x^3 + 7)$? Solution: $(x^2 - 1)^3$ has degree 6 and $(x^3 + 7)$ has degree 3, so p(x) has degree 6 + 3 = 9.
- 2. Let P denote the midpoint of the line segment joining (2,3) and (8,11). What is the distance from P to the point (-2,3)?

Solution: $P = (\frac{2+8}{2}, \frac{3+11}{2}) = (5, 7)$ so the distance is $d = \sqrt{(5+2)^2 + (7-3)^2} = \sqrt{49+16} = \sqrt{65}$.

3. Find the (implied) domain of

$$f(x) = \frac{\sqrt{x-4}}{x-7},$$

and write your answer in interval notation.

Solution: The domain D includes all real numbers greater than or equal to 4 except 7, which must be eliminated because it makes the denominator zero. Thus, $D = [4, 7) \cup (7, \infty)$.

4. Find all the *x*-intercepts of the function

$$t(x) = (2x-1)^3(x+1)^2 - (2x-1)^2(x+1)^3.$$

Solution: Factor the common stuff out to get $(2x-1)^2(x+1)^2[2x-1-(x+1)]$. Setting each of the three factors to zero yields x = 1/2, x = -1, and x = 2. 5. The line tangent to the graph of $y = e^{2x}$ at the point (0, 1) has slope 2. What is the *x*-intercept of the line?

Solution: The line is y - 1 = 2(x - 0) so the *x*-intercept is -1/2.

6. Consider the rational function $k(x) = \frac{(2x+1)^2(x+5)}{3x^3-5x^2}$. Estimate the value k(1000). Does k have a horizontal asymptote? Discuss.

Solution: Yes, $k(1000) \approx 1.34$ and the horizontal asymptote is the horizontal line whose value is the ratio of the coefficients of x^3 in the numerator and denominator, y = 4/3

7. Find an equation for a line perpendicular to the line 3x - 4y = 7 and which goes through the point (-2, -3).

Solution: The given line has slope 3/4 so the one perpendicular has slope -4/3. Hence y + 3 = (-4/3)(x + 2). Thus y = -4x/3 - 17/3.

8. Let $k(x) = x^2 - x$. Evaluate and simplify $\frac{k(x+h)-k(x)}{h}$. Then find the limit of the expression as h approaches 0.

Solution:

$$k'(x) = \lim_{h \to 0} \frac{k(x+h) - k(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - (x+h) - (x^2 - x)}{h}$$

=
$$\lim_{h \to 0} \frac{x^2 + 2 \cdot xh + h^2 - x - h - x^2 + x}{h}$$

=
$$\lim_{h \to 0} \frac{+2 \cdot xh + h^2 - h}{h}$$

=
$$\lim_{h \to 0} \frac{h(2x+h-1)}{h} = 2x - 1.$$

9. Suppose the functions f and g are given completely by the table of values shown.

x	f(x)	x	g(x)
0	2	0	5
1	7	1	7
2	5	2	4
3	1	3	2
4	3	4	6
5	6	5	3
6	0	6	1
7	4	7	0

- 10. What is $f \circ g \circ f(2)$? Solution: Note that f(2) = 5, g(5) = 3, and f(3) = 1, so $f \circ g \circ f(2) = 1$.
- 11. Solve $(f \circ g)(x) = 7$? Solution: Note that g(x) must be 1, so x = 6.
- 12. (10 points) The supply and demand curves are given below for digital cameras at XYZ Distributors, where x represents the number of units and p the price. Find the equilibrium quantity and price. Demand: $p = -x^2 2x + 100$ and Supply: p = 10x + 55.

Solution: Solve $-x^2 - 2x + 100 = 10x + 55$ by solving the quadratic $-x^2 - 12x + 45 = 0$ to get two solutions, x = 3 and x = -15, the later of which is extraneous. Thus x = 3 and p = 85.

13. (40 points) Compute each of the following limits.

(a) Let
$$f(x) = \begin{cases} x+2 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

 $\lim_{x \to 1} f(x)$

Solution: 3. Use the blotter test to see that f(x) is close to 3 when x is close (but not equal) to 1.

- (b) $\lim_{x \to 0} \frac{x^2 2x}{x}$ Solution: Factor the numerator and cancel out the factor x to get $\lim_{x \to 0} = -2$.
- (c) $\lim_{x \to 3} \frac{x^2 3x}{x^2 + x 12}$

Solution: Factor and eliminate the common factor x - 3, then set x = 3 to get 3/(3+4) = 3/7.

(d) $\lim_{x \to 2} |x^2 - \sqrt{16x - 7}|$

Solution: Just replace all the x's with the number 2 to get $|2^2 - \sqrt{16 \cdot 2 - 7}| = |4 - 5| = 1$.

- (e) $\lim_{x \to 1} \frac{x^2 1}{x^3 1}$ Solution: Factor the denominator and cancel out the factor x - 1 to get $\lim_{x \to 1} \frac{x + 1}{x^2 + x + 1} = 2/3.$
- (f) $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$

Solution: Rationalize the denominator to get $\frac{x-9}{\sqrt{x-3}} = \frac{(x-9)(\sqrt{x}+3)}{x-9}$ which has limit 6 as x approaches 9.

(g) $\lim_{x \to 1} \frac{\frac{1}{3x} - \frac{1}{3}}{x - 1}$

Solution: Do the fraction arithmetic to get $\frac{\frac{1}{3x} - \frac{1}{3}}{x-1} = \frac{\frac{1-x}{3x}}{\frac{x-1}{1}} = -\frac{1}{3x}$ which has limit -1/3 as x approaches 1.

(h) $\lim_{x \to \infty} \frac{2x^2}{(1-x)^2}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just 2/1 = 2.