October 2, 2019
Name
The problems count as marked. The total number of points available is 171. Throughout this test, show your work. This is an amalgamation of the tests from sections 4 and 5 .

1. (10 points) Find an equation for a line parallel to the line $2 y+3 x=12$ which passes through the point $(3,5)$.
Solution: The slope is $-3 / 2$ so the line in question is $y-5=-3(x-3) / 2$ which is $y=-3 x / 2+19 / 2$.
2. (10 points) Write the set of points that satisfy $||2 x-15|-3| \leq 2$ using interval notation.
Solution: First note that $||2 x-15|-3|=2$ gives rise to two equations, $|2 x-15|=5$ and $|2 x-15|=1$. Each of these splits into two linear equations, so we have $2 x-15=-5,2 x-15=5,2 x-15=-1,2 x-15=1$, which in turn gives $2 x=10,2 x=20,2 x=14$ and $2 x=16$. So we have four branch points, $5,10,7$, and 8 . Using the Test Interval Technique results in the solution $[5,7] \cup[8,10]$.
3. (25 points) The set C of points satisfying $x^{2}-24 x+y^{2}-10 y=-160$ is a circle.
(a) Find the center and the radius of the circle C.

Solution: Complete the square to get $(x-12)^{2}+(y-5)^{2}=3^{2}$, a circle centered at $(12,5)$ and radius 3 .
(b) There are two circles centered at $(0,0)$ which are tangent to C. Find an equation for one of them.
Solution: They are $x^{2}+y^{2}=100$ and $x^{2}+y^{2}=256$.
(c) Find the point on the line $y=x$ that is closest to C.

Solution: The slope of the line though the closest point (x, x) and $(12,5)$ must be -1 . Therefore $x=17 / 2$.
4. (36 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 3} \frac{x^{3}-8}{x-2}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2}=$ $\lim _{x \rightarrow 2} x^{2}+2 x+4=12$.
(b) $\lim _{x \rightarrow-2} \frac{x^{3}-3 x^{2}-24 x-28}{x^{2}-4}$
(c) $\lim _{x \rightarrow-2} \frac{x^{3}-3 x^{2}-24 x-28}{x^{3}+2 x^{2}-4 x+8}$
(d) $\lim _{x \rightarrow 1} \frac{x^{3}-5 x^{2}+7 x-3}{x^{3}-3 x+2}$ Hint: think about why this is a zero over zero problem.
Solution: Factor and eliminate the $(x-1)^{2}$ from numerator and denominator to get

$$
\lim _{x \rightarrow 1} \frac{x-3}{x+2}=-2 / 3
$$

(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{x-2}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\lim _{x \rightarrow 2} \frac{\frac{1}{3}\left[\frac{1}{x}-\frac{1}{2}\right]}{x-2}=\lim _{x \rightarrow 2} \frac{2-x}{x-2} \cdot \frac{1}{6 x}=-\frac{1}{12}
$$

(f) $\lim _{x \rightarrow 3} \frac{\sqrt{22-6 x}-2}{x-3}$

Solution: Rationalize the numerator to get

$$
\lim _{x \rightarrow 6} \frac{6 x-36}{(x-6)(\sqrt{6 x}+6)}=\frac{6}{12}=\frac{1}{2}
$$

(g) $\lim _{x \rightarrow-\infty} \frac{(2-x)(10+6 x)^{2}}{(3-5 x)(8+8 x)^{2}}$

Solution: The coefficient of the x^{3} term in the numerator is -36 and the coefficient of the x^{3} term in the denominator is -320 , so the limit is $-36 /-320=9 / 80$.
(h) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{6}-6}}{x^{2}+6}$

Solution: The degree of the numerator (about 3) is greater than that of the denominator, so the limit is does not exist.
(i) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{6}-6}}{x^{3}+6}$
5. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{(x+4)(2 x-3)(3 x-17)}}{x-6} .
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: Using the test interval technique, we see that the numerator is defined for when x belongs to $[-4,3 / 2) \cup(17 / 3, \infty)$. The denominator is zero at $x=6$, so it must be removed. Thus, the domain is $[-4,3 / 2] \cup[17 / 3,6) \cup(6, \infty)$.
6. (12 points) Let $H(x)=(x+1)\left(x^{2}-9\right)-(x-3)(3 x+5)$. Find the zeros of the function.
Solution: Factor out the common terms to get $H(x)=(x+1)\left(x^{2}-9\right)-(x-$ $3)(3 x+5)=(x-3)[(x+1)(x+3)-(3 x+5)]$. One factor is $x-3$ and the other is $x^{2}+x-2=(x+2)(x-1)$. So the zeros are $3,-2$, and 1 .
7. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=$

Solution: 2
(b) $\lim _{x \rightarrow-1^{+}} F(x)=$

Solution: 2
(c) $\lim _{x \rightarrow-1} F(x)=$

Solution: 2
(d) $F(-1)=$

Solution: 1
(e) $\lim _{x \rightarrow 1^{-}} F(x)=$

Solution: 0
(f) $\lim _{x \rightarrow 1^{+}} F(x)=$

Solution: 1
(g) $\lim _{x \rightarrow 1} F(x)=$

Solution: dne
(h) $\lim _{x \rightarrow 3} F(x)=$

Solution: -1
(i) $F(3)=$

Solution: - 1
8. (18 points)

$$
f(x)=\left\{\begin{array}{cl}
3 & \text { if } 2<x \leq 4 \\
4 & \text { if } x=2 \\
-x+1 & \text { if } 0 \leq x<2 \\
x+1 & \text { if }-4 \leq x<0
\end{array}\right.
$$

Sketch the graph of f and find following limits if they exist (if not, enter DNE).

Solution: Sketch the graph of f and find following limits if they exist (if not, enter DNE).

(a) Express the domain of f in interval notation.

Solution: $[-4,4]$.
(b) $\lim _{x \rightarrow 2^{-}} f(x)$

Solution: - 1
(c) $\lim _{x \rightarrow 2^{+}} f(x)$

Solution: 3
(d) $\lim _{x \rightarrow 2} f(x)$

Solution: DNE
(e) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: 1
(f) $\lim _{x \rightarrow 0} f(x)$

Solution: 1
9. (12 points) Let $f(x)=\left(2 x^{2}-3\right)^{3}(5 x-1)+17 x^{5}$, let $g(x)=(3 x-4)\left(2 x^{3}\right)^{2}-2 x^{4}$.
(a) What is the degree of the polynomial $f+g$?

Solution: 7
(b) What is the degree of the polynomial $f \cdot g$?

Solution: 14

(c) Estimate within one tenth of a unit the value of $f(10000) / g(10000)$.

Solution: Any answer between 3.3 and 3.4 works. See the next part.
(d) Compute $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$.

Solution: $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3\right)^{3}(5 x-1)+17 x^{5}}{(3 x-4)\left(2 x^{3}\right)^{2}-2 x^{4}}=\lim _{x \rightarrow \infty} \frac{40 x^{7}}{12 x^{7}}=10 / 3$ because the degree of the denominator is the same as that of the numerator.
10. (15 points) Recall that the Intermediate Value Theorem guarantees that for any function f continuous over the interval $[a, b]$ and for any number M between $f(a)$ and $f(b)$, there exists a number c such that $f(c)=M$. The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
Solution: Suppose you picked $b=2$. Then $f(a)=1 / 2$ and $f(b)=2 / 3$. You could choose $M=3 / 5$.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.
Solution: To solve $f(c)=3 / 5$, write $\frac{1}{1+\frac{1}{x}}=3 / 5$, from which we get $5=$ $3+3 / x$ and then $3 / x=2$, so $x=3 / 2$. Indeed $3 / 2$ is between 1 and 2 , as required.
11. (20 points) Let $f(x)=\frac{1}{x+1}$. Note that $f(0)=1$.
(a) Find the slope of the line joining the points $(0,1)$ and $(0+h, f(0+h))=$ $(h, f(h))$, where $h \neq 0$. Then find the limit as h approaches 0 to get $f^{\prime}(0)$.
Solution: $\frac{f(h)-1}{h-0}$, which can be massaged to give $-\frac{1}{h+1}$. Thus $f^{\prime}(0)=-1$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 . In other words, find $f^{\prime}(x)$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+1-(x+h+1)}{(x+1)(x+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+1)(x+h+1)}}{h} \\
& =-\frac{1}{(x+1)^{2}} .
\end{aligned}
$$

(c) Replace the x with 0 in your answer to (b) to find $f^{\prime}(0)$.

Solution: $f^{\prime}(0)=-1$
(d) Use the information given and that found in (c) to find an equation in slopeintercept form for the line tangent to the graph of f at the point $(0,1)$.
Solution: The line is $y-1=-1(x-0)$, or $y=-x+1$.
12. (12 points) Let

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \leq 0 \\
1 & \text { if } 0<x<2 \\
3 & \text { if } 2 \leq x
\end{array}\right.
$$

and let $g(x)=2 x-1$.
(a) Build $g \circ f$.

Solution:

$$
g \circ f(x)=2 f(x)-1=\left\{\begin{array}{cl}
-3 & \text { if } x \leq 0 \\
1 & \text { if } 0<x<2 \\
5 & \text { if } 2 \leq x
\end{array}\right.
$$

(b) Build $f \circ g$.

Solution:

$$
f \circ g(x)=\left\{\begin{array}{cl}
-1 & \text { if } 2 x-1 \leq 0 \\
1 & \text { if } 0<2 x-1<2 \\
3 & \text { if } 2 \leq 2 x-1
\end{array}\right.
$$

Therefore,

$$
f \circ g(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \leq 1 / 2 \\
1 & \text { if } 1 / 2<x<3 / 2 \\
3 & \text { if } 3 / 2 \leq x
\end{array}\right.
$$

