February 14, 2003
Name
The first 7 problems count 7 points each and the final 4 count as marked. The total number of points available is 129 .
Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.

1. Which of the following numbers belong to the (implied) domain of

$$
f(x)=\frac{\sqrt{x-2}}{x-3} ?
$$

Circle all those that apply.
(A) -2
(B) 2
(C) 3
(D) 4
(E) 5

Solution: The domain includes all real numbers greater than or equal to 2 except 3 , which makes the denominator zero. Thus, 2, 4, and 5 all belong to the domain.
2. What is the y-intercept of the line defined by $\frac{x}{6}+\frac{y}{3}=2$?
(A) -2
(B) 4
(C) 6
(D) 12
(E) 16

Solution: The y-intercept is the point on the line for which $x=0$. Solving for y gives $y=6$.
3. Let $f(x)=2 x+4$ and $g(x)=3 x-9$. What is the value of $g(f(g(3)))$?
(A) -18
(B) -3
(C) 3
(D) 9
(E) 18

Solution: $g(f(g(3)))=g(f(0))=g(4)=3$.
4. Let $f(x)=x^{2}+1$. Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$.
(A) $h-2$
(B) $2 x-2 h+h^{2}$
(C) $2 x+h$
(D) $2 x+h+2$
(E) $x^{2}+2 h+2$

Solution: Simplify $\frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h}$ to get $\frac{\left.x^{2}+2 x h+h^{2}+1-x^{2}-1\right)}{h}=\frac{2 x h+h^{2}}{h}$, whereupon, the h can be factored from the numerator and cancelled with the h in the denominator to yield $2 x+h$.
5. Referring to the function $h(x)$ defined in problem 9, what is the slope of the secant line joining the points $(-2, h(-2))$ and $(4, h(4))$?
(A) -1
(B) $-1 / 2$
(C) 0
(D) $1 / 2$
(E) 1

Solution: A. The slope is $m=\frac{3-0}{-2-4}=-\frac{1}{2}$.

Suppose the functions f and g are given completely by the table of values shown.

x	$f(x)$	x	$g(x)$
0	2	0	5
1	7		1
2	5		7
3		2	4
4		3	2
5		4	6
5	6		5
6	0		3
7	4		1
7		0	

6. Solve the equation $f \circ g(x)=6$?
(A) 0
(B) 1
(C) 4
(D) 5
(E) 6

Solution: Since $f(5)=6$, it must be the case that $g(x)=5$. This is true only when $x=0$.
7. Compute $(g \circ f)(2+f(2))$?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Solution: Note that $2+f(2)=7$ and $g(f(7))=g(4)=6$.
On all the following questions, show your work.
8. (10 points) The supply and demand curves are given below for digital cameras at XYZ Distributors, where x represents the number of units and p the price. Find the equilibrium quantity and price. Demand: $p=-x^{2}-2 x+100$ and Supply: $p=8 x+25$.

Solution: Solve $-x^{2}-2 x+100=8 x+25$ by solving the quadratic $-x^{2}-$ $10 x+75=0$ to get two solutions, $x=5$ and $x=-15$, the later of which is extraneous. Thus $x=5$ and $p=65$.
9. (30 points) For each of the next questions, let h be defined as follows:
$h(x)= \begin{cases}x^{2}-1 & \text { if } x<0 \\ x & \text { if } 0 \leq x<2 \\ 3 & \text { if } x=2 \\ 4-x & \text { if } 2<x\end{cases}$
(a) What is $\lim _{x \rightarrow-1} h(x)$?

Solution: $\lim _{x \rightarrow-1} h(x)=(-1)^{2}-1=0$
(b) What is $\lim _{x \rightarrow 0^{-}} h(x)$?

Solution: $\lim _{x \rightarrow 0^{-}} h(x)=\lim _{x \rightarrow 0^{-}} x^{2}-1=-1$
(c) What is $\lim _{x \rightarrow 1} h(x)$?

Solution: $\lim _{x \rightarrow 1} h(x)=\lim _{x \rightarrow 0^{-}} x=1$
(d) What is $\lim _{x \rightarrow 2^{+}} h(x)$?

Solution: $\lim _{x \rightarrow 2^{+}} h(x)=\lim _{x \rightarrow 2^{+}} 4-x=2$
(e) What is $\lim _{x \rightarrow 2} h(x)$?

Solution: Since $\lim _{x \rightarrow 2^{-}} h(x)=\lim _{x \rightarrow 2^{-}} x=2$ and the limit from the right is also 2 , it follows that the limit is 2 .
(f) What is $\lim _{x \rightarrow 4} h(x)$?

Solution: $\lim _{x \rightarrow 4} h(x)=\lim _{x \rightarrow 4} 4-x=0$
10. (40 points) Compute each of the following limits.
(a) Let $f(x)= \begin{cases}x+2 & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}$
$\lim _{x \rightarrow 1} f(x)$
Solution: Use the blotter test to see that $f(x)$ is close to 3 when x is close (but not equal) to 1 .
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Solution: Factor the numerator and cancel out the factor $x-2$ to get $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{x+2}{1}=4$.
(c) $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$

Solution: Factor the denominator and cancel out the factor $x-1$ to get $\lim _{x \rightarrow 1} \frac{1}{x^{2}+x+1}=1 / 3$.
(d) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

Solution: Rationalize the numerator to get $\frac{\sqrt{x}-3}{x-9}=\frac{x-9}{(x-9)(\sqrt{x}+3)}$ which has limit $1 / 6$ as x approaches 9 .
(e) $\lim _{x \rightarrow 1} \frac{\frac{1}{2 x}-\frac{1}{2}}{x-1}$

Solution: Do the fraction arithmetic to get $\frac{\frac{1}{2 x}-\frac{1}{2}}{x-1}=\frac{\frac{1-x}{2 x}}{\frac{x-1}{1}}=-\frac{1}{2 x}$ which has limit $-1 / 2$ as x approaches 1 .
(f) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}+x-6}$

Solution: Factor and eliminate the common factor $x-2$, then set $x=2$ to get $2 /(2+3)=2 / 5$.
(g) $\lim _{x \rightarrow 2} 2 x^{3} \sqrt{x^{2}+12}$

Solution: Just replace all the x 's with the number 2 to get $2 \cdot 2^{3} \sqrt{4+12}=$ $16 \cdot 4=64$.
(h) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{1+x^{2}}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just $2 / 1=2$.

