February 25, $2019 \quad$ Name
The problems count as marked. The total number of points available is 155. Throughout this test, show your work.

1. (6 points) Find an equation in slope-intercept form for a line perpendicular to the line $3 x-6 y=7$ and which goes through the point $(-3,5)$.
Solution: The given line has slope $1 / 2$ so the one perpendicular has slope -2 . Hence $y-5=(-2)(x+3)$. Thus $y=-2 x-1$.
2. (20 points) The equations $x^{2}+2 x+y^{2}=15$ and $x^{2}-10 x+y^{2}-16 y=-53$ are both circles.
(a) (8 points) Use the 'complete the square' idea to find the centers and radii of the circles.
Solution: The first is $(x+1)^{2}+y^{2}=4^{2}$ and the second is $(x-5)^{2}+$ $(y-8)^{2}=6^{2}$ so the centers are $(-1,0)$ and $(5,8)$ and the radii are 4 and 6 respectively.
(b) Find the distance between the centers.

Solution: The distance between the centers is $\sqrt{6^{2}+8^{2}}=10$.
(c) Find the midpoint of the line segment joining the centers.

Solution: The midpoint of the segment is $\frac{1}{2}(-1,0)+\frac{1}{2}(5,8)=(2,4)$.
(d) Find the slope of the line joining the centers.

Solution: The slope is $8 / 6=4 / 3$.
(e) Do the circles have one, two, or no points in common? Write a complete sentence to justify your answer.
Solution: The circles have one point in common because the sum of the radii is exactly the distance between the centers. That point is $(1.4,3.2)$.
3. (42 points) Evaluate each of the limits (and function values) indicated below.
(a) $\lim _{x \rightarrow 2} \frac{(x+1)^{2}-9}{x-2}$

Solution: Factor and eliminate the $x-2$ from numerator and denominator to get

$$
\lim _{x \rightarrow 2} x+4=6
$$

(b) $\lim _{x \rightarrow 2} \frac{2-x}{\frac{1}{2 x}-\frac{1}{4}}$

Solution: The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{2-x}{\frac{2-x}{4 x}} & = \\
\lim _{x \rightarrow 2} 4 x & =8
\end{aligned}
$$

(c) $\lim _{x \rightarrow 6} \frac{\sqrt{2 x-3}-3}{x-6}$

Solution: Rationalize the numerator to get $\lim _{x \rightarrow 6} \frac{(\sqrt{2 x-3}-3)(\sqrt{2 x-3}+3)}{(x-6)(\sqrt{2 x-3}+3)}=$ $\lim _{x \rightarrow 6} \frac{2 x-3-9}{(x-6)(\sqrt{2 x-3}+3)}=2 / 6=1 / 3$.
(d) $\lim _{x \rightarrow-1} \frac{x^{3}+6 x^{2}+11 x+6}{x^{3}-4 x^{2}+x+6}$

Solution: Factor both parts to get $\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}+5 x+6\right)}{(x+1)\left(x^{2}-5 x+6\right.}=2 / 12=$ 1/6.
(e) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}=$ $\lim _{x \rightarrow 1} \frac{(x-1)(x+1}{(x-1)\left(x^{2}+x+1\right)}=\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+x+1}=2 / 3$
(f) $\lim _{h \rightarrow \infty} \frac{\left(2 x^{2}-5\right)(3 x+1)}{4 x^{3}+x^{2}-17}$.

Solution: The degrees are the same so we get $6 / 4=3 / 2$.
4. (18 points) Let

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
x-1 & \text { if } 0 \leq x<2 \\
-1 & \text { if } x=2 \\
1 & \text { if } 2<x \leq 7
\end{array}\right.
$$

Find the value, if it exists, of each item below. Use DNE when the limit does not exist.
(a) What is the domain of f ?

Solution: $(-\infty, 7]$.
(b) $\lim _{x \rightarrow 0^{-}} f(x)$

Solution: 0
(c) $\lim _{x \rightarrow 0^{+}} f(x)$

Solution: -1
(d) $\lim _{x \rightarrow 0} f(x)$

Solution: DNE because the left limit and right limit are different.
(e) $f(0)$

Solution: -1
(f) $\lim _{x \rightarrow 2^{-}} f(x)$

Solution: 1
(g) $\lim _{x \rightarrow 2^{+}} f(x)$

Solution: 1, because both the left limit and the right limit are 1.
(h) $\lim _{x \rightarrow 2} f(x)$

Solution: 1
(i) $f(2)$

Solution: -1
5. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1)^{2} .
$$

Solution: Factor out the common terms to get $g(x)=\left(2 x^{2}-1\right)(3 x+1)\left[\left(2 x^{2}-\right.\right.$ 1) $-(3 x+1)=\left(2 x^{2}-1\right)(3 x+1)\left(2 x^{2}-3 x-2\right)$. Setting each factor equal to zero, we find the zeros are $x=-\sqrt{2} / 2, x=\sqrt{2} / 2, x=-1 / 3, x=1$ and $x=-3$.
6. (15 points)
(a) Find all solutions of the inequality $|2 x-7| \leq 5$ and write your solution in interval notation.
Solution: First solve the equation $|2 x-7| \leq 5$, which has two solutions: $2 x-7=5$ yields $x=6$ and $2 x-7=-5$ yields $x=1$. Now consider the three intervals determined by these two points: $(-\infty, 1),(1,6),(6, \infty)$. Select a test point from each of these intervals. I've picked 0,3 , and 7 . Trying each of these, we see that $|2 \cdot 0-7|=7 \leq 5$, NO; $|2 \cdot 3-7|=1 \leq 5$, YES; $|2 \cdot 7-7|=7 \leq 5$, NO; So only the interval $(1,6)$ works. Check the endpoints and see that they both work also. So our answer is $[1,6]$.
(b) Find the (implied) domain of

$$
f(x)=\sqrt{|2 x-7|-3}
$$

and write your answer in interval notation.
Solution: We need to find out where $|2 x-7|-3$ is zero or positive. First solve the equation $|2 x-7|-3=0$ to get $x=5$ and $x=2$. Then use the test interval technique to find the sign chart for $g(x)=|2 x-7|-3$. You see that $g(x)>0$ on both $(-\infty, 2)$ and $(5, \infty)$. Then notice that the endpoints need to be included. So the answer is $(-\infty, 2] \cup[5, \infty)$.
7. (24 points) Compute the following derivatives.
(a) Let $f(x)=\frac{x^{2}-2 x}{3 x-x^{2}}$. Find $\frac{d}{d x} f(x)$.

Solution: Use the quotient rule to get $f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{(2 x-2)\left(3 x-x^{2}\right)-(3-2 x)\left(x^{2}-2 x\right)}{\left(3 x-x^{2}\right)^{2}}$. This can be simplified to $-\frac{x^{2}}{\left(3 x-x^{2}\right)^{2}}$ which can be simplified still further: $-\frac{1}{(x-3)^{2}}$.
(b) Let $g(x)=\sqrt{x^{3}+2 x+4}$. What is $g^{\prime}(x)$?

Solution: $g^{\prime}(x)=1 / 2\left(x^{3}+2 x+4\right)^{-1 / 2} \cdot\left(3 x^{2}+2\right)=\frac{3 x^{2}+2}{2 \sqrt{x^{3}+2 x+4}}$.
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$

Solution: Use the product rule to get $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)=2(3 x+$ $1)^{1} \cdot 3 \cdot\left(4 x^{2}-1\right)+8 x(3 x+1)^{2}$, which can be simplified but not significantly.
(d) Let $f(x)=\left(2 x^{2}+1\right)^{4}$. Find $f^{\prime}(x)$.

Solution: Note that, by the chain rule, $f^{\prime}(x)=4\left(2 x^{2}+1\right)^{3} \cdot 4 x=$ $16 x\left(2 x^{2}+1\right)^{3}$.
8. (20 points) Let $f(x)=\frac{1}{x+1}$. Note that $f(0)=1$.
(a) Find the slope of the line joining the points $(0,1)$ and $(0+h, f(0+h))=$ $(h, f(h))$, where $h \neq 0$.
Solution: $\frac{f(h)-1}{h-0}$, which can be massaged to give $\frac{1}{h-1}$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+1-(x+h+1)}{(x+1)(x+h+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+1)(x+h+1)}}{h} \\
& =-\frac{1}{(x+1)^{2}} .
\end{aligned}
$$

(c) Replace the x with 0 in your answer to (b) to find $f^{\prime}(0)$.

Solution: $f^{\prime}(0)=-1$
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(0,1)$.
Solution: The line is $y-1=-1(x-0)$, or $y=-x+1$.

