February 25, $2019 \quad$ Name
The problems count as marked. The total number of points available is 155. Throughout this test, show your work.

1. (6 points) Find an equation in slope-intercept form for a line perpendicular to the line $3 x-6 y=7$ and which goes through the point $(-3,5)$.
2. (20 points) The equations $x^{2}+2 x+y^{2}=15$ and $x^{2}-10 x+y^{2}-16 y=-53$ are both circles.
(a) (8 points) Use the 'complete the square' idea to find the centers and radii of the circles.
(b) Find the distance between the centers.
(c) Find the midpoint of the line segment joining the centers.
(d) Find the slope of the line joining the centers.
(e) Do the circles have one, two, or no points in common? Write a complete sentence to justify your answer.
3. (42 points) Evaluate each of the limits (and function values) indicated below.
(a) $\lim _{x \rightarrow 2} \frac{(x+1)^{2}-9}{x-2}$
(b) $\lim _{x \rightarrow 2} \frac{2-x}{\frac{1}{2 x}-\frac{1}{4}}$
(c) $\lim _{x \rightarrow 6} \frac{\sqrt{2 x-3}-3}{x-6}$
(d) $\lim _{x \rightarrow-1} \frac{x^{3}+6 x^{2}+11 x+6}{x^{3}-4 x^{2}+x+6}$
(e) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$
(f) $\lim _{h \rightarrow \infty} \frac{\left(2 x^{2}-5\right)(3 x+1)}{4 x^{3}+x^{2}-17}$.
4. (18 points) Let

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
x-1 & \text { if } 0 \leq x<2 \\
-1 & \text { if } x=2 \\
1 & \text { if } 2<x \leq 7
\end{array}\right.
$$

Find the value, if it exists, of each item below. Use DNE when the limit does not exist.
(a) What is the domain of f ?
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$
(e) $f(0)$
(f) $\lim _{x \rightarrow 2^{-}} f(x)$
(g) $\lim _{x \rightarrow 2^{+}} f(x)$
(h) $\lim _{x \rightarrow 2} f(x)$
(i) $f(2)$
5. (10 points) Find all the x-intercepts of the function

$$
g(x)=\left(2 x^{2}-1\right)^{2}(3 x+1)-\left(2 x^{2}-1\right)(3 x+1)^{2} .
$$

6. (15 points)
(a) Find all solutions of the inequality $|2 x-7| \leq 5$ and write your solution in interval notation.
(b) Find the (implied) domain of

$$
f(x)=\sqrt{|2 x-7|-3}
$$

and write your answer in interval notation.
7. (24 points) Compute the following derivatives.
(a) Let $f(x)=\frac{x^{2}-2 x}{3 x-x^{2}}$. Find $\frac{d}{d x} f(x)$.
(b) Let $g(x)=\sqrt{x^{3}+2 x+4}$. What is $g^{\prime}(x)$?
(c) Find $\frac{d}{d x}\left((3 x+1)^{2} \cdot\left(4 x^{2}-1\right)\right)$
(d) Let $f(x)=\left(2 x^{2}+1\right)^{4}$. Find $f^{\prime}(x)$.
8. (20 points) Let $f(x)=\frac{1}{x+1}$. Note that $f(0)=1$.
(a) Find the slope of the line joining the points $(0,1)$ and $(0+h, f(0+h))=$ $(h, f(h))$, where $h \neq 0$.
(b) Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$. Then find the limit of the expression as h approaches 0 .
(c) Replace the x with 0 in your answer to (b) to find $f^{\prime}(0)$.
(d) Use the information given and that found in (c) to find an equation for the line tangent to the graph of f at the point $(0,1)$.

