September 18, 2001

Your name

The first 6 problems count 4 points each and the final ones counts as marked. Problems 1 through 6 are multiple choice. In the multiple choice section, circle the correct choice (or choices). You do not need to show your work on problems 1 through 6, but you must show your work on the other problems. The total number of points available is 125.

1. Which of the following is a factor of $x^4 - x$? Circle all those that apply.

(A) x

(B) x - 1

(C) x + 1 (D) $x^2 + x + 1$ (E) $x^2 - x + 1$

Solution: Note that $x^4 - x = x(x^3 - 1) = x(x - 1)(x^2 + x + 1)$, so the three answers are A,B, and D.

2. How many roots does the equation below have?

 $x(x^2-3)-4(x^2-3)=0$

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

Solution: D. Factor to get $x(x^2-3)-4(x^2-3)=(x^2-3)(x-4)=0$. Now the first factor has two zeros and the second has one, so there are 3 roots.

3.

$$\frac{1+\frac{1}{x}}{1-\frac{1}{x}} =$$

(A) $\frac{x+1}{x-1}$ (B) $\frac{x-1}{x+1}$ (C) x-1 (D) 1-x (E) x

Solution: A. Note that $\frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{\frac{x+1}{x}}{\frac{x-1}{x}} = \frac{x+1}{x-1}$.

4. What is the radius of the circle whose equation is given by $x^2 - 8x + y^2 + 6y =$ 24?

(A) 4

(B) $\sqrt{24}$

(C) 5

(D) 6

 (\mathbf{E}) 7

Solution: E. Complete the squares for each variable to get $x^2 - 8x + y^2 + 6y =$ $x^{2} - 8x + 16 + y^{2} + 6y + 9 = (x - 4)^{2} + (y + 3)^{2} = 24 + 16 + 9 = 49 = 7^{2}$, so the center of the circle is (4, -3) and the radius is r = 7.

5. Which of the following is a solution to $2(5-3x)-2\cdot 5-3x=108$? Circle all that apply.

(A) none (B) -12 (C) -9 (D) -2 (E) 0

Solution: B. The equation is equivalent to -9x = 108, or x = -12.

6. Which of the following is not a solution to $3(x-2)^3(x+1)^2-2(x-2)^2(x+1)^3=0$? Circle all that apply.

(A) -2 (B) -1 (C) 0 (D) 2 (E) 8

Solution: A and C. Factor to get $(x-2)^2(x+1)^2(3x-6-2x-2) = (x-2)^2(x+1)^2(x-8) = 0$.

On all the following questions, show your work.

7. (7 points) Find all roots of the equation

$$(x-1)(x+1) + (x-2)(x+1) = 0.$$

Solution: Factor (x-1)(x+1)+(x-2)(x+1) to get (x+1)((x-1)+(x-2))=(x+1)(2x-3)=0, which has two roots, x=-1 and x=3/2.

8. (7 points) Rationalize the numerator of the expression $\frac{\sqrt{4+h}-2}{h}$, and express your answer in simplified form.

Solution: $\frac{\sqrt{4+h}-2}{h} = \frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2} = \frac{4+h-4}{h(\sqrt{4+h}+2)} = \frac{1}{\sqrt{4+h}+2}$.

9. (7 points) Find a complete factorization of $x^6 - 64$.

Solution: Note that $x^6 - 64$ is the difference of two squares. Hence $x^6 - 64 = (x^3 - 8)(x^3 + 8) = (x - 2)(x^2 + 2x + 4)(x + 2)(x^2 - 2x + 4)$.

10. (7 points) Find a symbolic representation of $f \circ g(x)$ in the case where $f(x) = \sqrt{2x} - 5$ and g(x) = 7 - x. Then find the implied domain of $f \circ g(x)$

Solution: $f \circ g(x) = f(g(x)) = f(7-x) = \sqrt{2(7-x)} - 5 = \sqrt{14-2x} - 5$, and the implied domain is $x \le 7$.

11. (7 points) The points A = (0,0), B = (8,0), and C = (3,6) are the vertices of triangle. Find the length of the longest side.

Solution: The lengths of the three sides are $d_1 = \sqrt{8^2} = 8$, $\sqrt{6^2 + 3^2} = \sqrt{45} \approx 6.70$, and $\sqrt{5^2 + 6^2} = \sqrt{61} \approx 7.81$, so the length of the longest side is 8.

Math 1120 Calculus Test 1

12. (7 points) What is the slope of the line joining the points (-2, f(-2)) and (4, f(4)), where f is the function defined by

$$f(x) = \begin{cases} x^2 - |x| & \text{if } x \le 2\\ 3x - 2 & \text{if } x > 2 \end{cases}$$

Solution: The slope is $\frac{f(4)-f(-2)}{4-(-2)} = (10-2)/6 = 4/3$.

- 13. (7 points) Find the (implied) domain of the function $f(x) = \frac{\sqrt{x}}{x-3}$. **Solution:** The domain is all real nonnegative real numbers except 3, ie, $[0,3) \cup (3,\infty)$.
- 14. (12 points) Suppose the functions f and g are given by the table of values shown. Complete the table by calculating the values of $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

\boldsymbol{x}	$\int f(x)$	g(x)	$f \circ g(x)$	$g \circ f(x)$
0	2	1		
1	3	5		
2	2	1		
3	5	4		
4	4	3		
5	2	0		

Solution:

\boldsymbol{x}	$\int f(x)$	g(x)	$f \circ g(x)$	$g \circ f(x)$
0	2	1	3	1
1	3	5	2	4
2	2	1	3	1
3	5	4	4	0
4	4	3	5	3
5	2	0	2	1

15. (40 points) Evaluate each of the limits, or state that it does not exist.

(a)
$$\lim_{x \to \infty} \frac{x^2 + 9x - 11}{2x^2 - 4x + 23}$$

Solution: The limit is just the ratio of the two coefficients of x^2 , or 1/2.

Math 1120 Calculus Test 1

(b)
$$\lim_{z \to 2} \frac{z^3 - 8}{z - 2}$$

Solution: The numerator factors into $(z-2)(z^2+2z+4)$, so the limit is just the value of (z^2+2z+4) at z=2, which is 12.

(c)
$$\lim_{h\to 3} \frac{(2-h)^2 + (2+h)^2}{h^2 - 3h + 6}$$

Solution: Just evaluate the numerator and denominator at h=3 to get $\frac{1^2+5^2}{9-9+6}=26/6=13/3$.

(d)
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

Solution: The denominator factors into (x-3)(x+3), so the limit is just the value of $\frac{1}{x+3}$ at x=3, that is, 1/6.

(e)
$$\lim_{x \to 2} f(x)$$
 where

$$f(x) = \begin{cases} (x-4)^2 & \text{if } x < 2\\ 7 & \text{if } x = 2\\ 5x - 6 & \text{if } x > 2 \end{cases}$$

Solution: Cover the left side of the graph to find the right limit, which is the value you get from the 5x-6 piece, namely 4. Then cover the right half to get the left limit, $\lim_{x\to 2^-} (x-4)^2$, which is also 4. Hence the limit is 4.