September 18, 2001
Your name
The first 6 problems count 4 points each and the final ones counts as marked. Problems 1 through 6 are multiple choice. In the multiple choice section, circle the correct choice (or choices). You do not need to show your work on problems 1 through 6 , but you must show your work on the other problems. The total number of points available is 125 .

1. Which of the following is a factor of $x^{4}-x$? Circle all those that apply.
(A) x
(B) $x-1$
(C) $x+1$
(D) $x^{2}+x+1$
(E) $x^{2}-x+1$

Solution: Note that $x^{4}-x=x\left(x^{3}-1\right)=x(x-1)\left(x^{2}+x+1\right)$, so the three answers are A, B, and D .
2. How many roots does the equation below have?

$$
x\left(x^{2}-3\right)-4\left(x^{2}-3\right)=0
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: D. Factor to get $x\left(x^{2}-3\right)-4\left(x^{2}-3\right)=\left(x^{2}-3\right)(x-4)=0$. Now the first factor has two zeros and the second has one, so there are 3 roots.
3.

$$
\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=
$$

(A) $\frac{x+1}{x-1}$
(B) $\frac{x-1}{x+1}$
(C) $x-1$
(D) $1-x$
(E) x

Solution: A. Note that $\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x-1}}{\frac{x-1}{x}}=\frac{x+1}{x-1}$.
4. What is the radius of the circle whose equation is given by $x^{2}-8 x+y^{2}+6 y=$ 24 ?
(A) 4
(B) $\sqrt{24}$
(C) 5
(D) 6
(E) 7

Solution: E. Complete the squares for each variable to get $x^{2}-8 x+y^{2}+6 y=$ $x^{2}-8 x+16+y^{2}+6 y+9=(x-4)^{2}+(y+3)^{2}=24+16+9=49=7^{2}$, so the center of the circle is $(4,-3)$ and the radius is $r=7$.
5. Which of the following is a solution to $2(5-3 x)-2 \cdot 5-3 x=108$? Circle all that apply.
(A) none
(B) -12
(C) -9
(D) -2
(E) 0

Solution: B. The equation is equivalent to $-9 x=108$, or $x=-12$.
6. Which of the following is not a solution to $3(x-2)^{3}(x+1)^{2}-2(x-2)^{2}(x+1)^{3}=$ 0 ? Circle all that apply.
(A) -2
(B) -1
(C) 0
(D) 2
(E) 8

Solution: A and C. Factor to get $(x-2)^{2}(x+1)^{2}(3 x-6-2 x-2)=(x-$ $2)^{2}(x+1)^{2}(x-8)=0$.
On all the following questions, show your work.
7. (7 points) Find all roots of the equation

$$
(x-1)(x+1)+(x-2)(x+1)=0
$$

Solution: Factor $(x-1)(x+1)+(x-2)(x+1)$ to get $(x+1)((x-1)+(x-2))=$ $(x+1)(2 x-3)=0$, which has two roots, $x=-1$ and $x=3 / 2$.
8. (7 points) Rationalize the numerator of the expression $\frac{\sqrt{4+h}-2}{h}$, and express your answer in simplified form.
Solution: $\quad \frac{\sqrt{4+h}-2}{h}=\frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}=\frac{4+h-4}{h(\sqrt{4+h}+2)}=\frac{1}{\sqrt{4+h}+2}$.
9. (7 points) Find a complete factorization of $x^{6}-64$.

Solution: Note that $x^{6}-64$ is the difference of two squares. Hence $x^{6}-64=$ $\left(x^{3}-8\right)\left(x^{3}+8\right)=(x-2)\left(x^{2}+2 x+4\right)(x+2)\left(x^{2}-2 x+4\right)$.
10. (7 points) Find a symbolic representation of $f \circ g(x)$ in the case where $f(x)=$ $\sqrt{2 x}-5$ and $g(x)=7-x$. Then find the implied domain of $f \circ g(x)$
Solution: $f \circ g(x)=f(g(x))=f(7-x)=\sqrt{2(7-x)}-5=\sqrt{14-2 x}-5$, and the implied domain is $x \leq 7$.
11. (7 points) The points $A=(0,0), B=(8,0)$, and $C=(3,6)$ are the vertices of triangle. Find the length of the longest side.
Solution: The lengths of the three sides are $d_{1}=\sqrt{8^{2}}=8, \sqrt{6^{2}+3^{2}}=\sqrt{45} \approx$ 6.70 , and $\sqrt{5^{2}+6^{2}}=\sqrt{61} \approx 7.81$, so the length of the longest side is 8 .
12. (7 points) What is the slope of the line joining the points $(-2, f(-2))$ and $(4, f(4))$, where f is the function defined by

$$
f(x)= \begin{cases}x^{2}-|x| & \text { if } x \leq 2 \\ 3 x-2 & \text { if } x>2\end{cases}
$$

Solution: The slope is $\frac{f(4)-f(-2)}{4-(-2)}=(10-2) / 6=4 / 3$.
13. (7 points) Find the (implied) domain of the function $f(x)=\frac{\sqrt{x}}{x-3}$.

Solution: The domain is all real nonnegative real numbers except 3 , ie, $[0,3) \cup$ $(3, \infty)$.
14. (12 points) Suppose the functions f and g are given by the table of values shown. Complete the table by calculating the values of $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

x	$f(x)$	$g(x)$	$f \circ g(x)$	$g \circ f(x)$
0	2	1		
1	3	5		
2	2	1		
3	5	4		
4	4	3		
5	2	0		

Solution:

x	$f(x)$	$g(x)$	$f \circ g(x)$	$g \circ f(x)$
0	2	1	3	1
1	3	5	2	4
2	2	1	3	1
3	5	4	4	0
4	4	3	5	3
5	2	0	2	1

15. (40 points) Evaluate each of the limits, or state that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+9 x-11}{2 x^{2}-4 x+23}$

Solution: The limit is just the ratio of the two coefficients of x^{2}, or $1 / 2$.
(b) $\lim _{z \rightarrow 2} \frac{z^{3}-8}{z-2}$

Solution: The numerator factors into $(z-2)\left(z^{2}+2 z+4\right)$, so the limit is just the value of $\left(z^{2}+2 z+4\right)$ at $z=2$, which is 12 .
(c) $\lim _{h \rightarrow 3} \frac{(2-h)^{2}+(2+h)^{2}}{h^{2}-3 h+6}$

Solution: Just evaluate the numerator and denominator at $h=3$ to get $\frac{1^{2}+5^{2}}{9-9+6}=26 / 6=13 / 3$.
(d) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$

Solution: The denominator factors into $(x-3)(x+3)$, so the limit is just the value of $\frac{1}{x+3}$ at $x=3$, that is, $1 / 6$.
(e) $\lim _{x \rightarrow 2} f(x)$
where

$$
f(x)= \begin{cases}(x-4)^{2} & \text { if } x<2 \\ 7 & \text { if } x=2 \\ 5 x-6 & \text { if } x>2\end{cases}
$$

Solution: Cover the left side of the graph to find the right limit, which is the value you get from the $5 x-6$ piece, namely 4 . Then cover the right half to get the left limit, $\lim _{x \rightarrow 2^{-}}(x-4)^{2}$, which is also 4 . Hence the limit is 4 .

