Test 1

October 14, 2015
Name
The problems count as marked. The total number of points available is 171 . Throughout this test, show your work. Use of calculator to circumvent ideas discussed in class will generally result in no credit.

1. (20 points)
(a) Find all solutions to $||x-3|-8|=5$.
(b) Find all solutions: $|x-3|+|x-8|=8$.

Solution: First note that $|x-3|-8$ could be either 5 or -5 . That is, $|x-3|-8=5$ or $|x-3|-8=-5$. Thus either $|x-3|=13$ or $|x-3|=3$. Each of these has two solutions. The former, $x=-10$ and $x=16$ and the later, $x=6$ and $x=0$.
(c) Find the domain of the function $f(x)=\sqrt{||x-3|-8|-5}$ and write your answer in interval form.
Solution: Solve the inequality $||x-3|-8|-5 \geq 0$. Change it to an equality and solve to get the four numbers $0,6,-10$, and 16 . Then use the test interval technique to get $(-\infty,-10] \cup[0,6] \cup[16, \infty)$.
2. (24 points) The set of points C_{1} in the plane satisfying $x^{2}+y^{2}=4$ is a circle. The set C_{2} whose points satisfy $x^{2}-16 x+y^{2}-12 y=-36$ is also a circle.
(a) What is the distance between the centers of the circles?

Solution: The centers are $(0,0)$ and $(8,6)$, so the distance is $d=$ $\sqrt{8^{2}+6^{2}}=\sqrt{100}=10$.
(b) How many points in the plane belong to both circles. That is, how many points in the plane satisfy both equations?
Solution: The radii are 2 and $8\left(x^{2}-16 x+y^{2}-12 y=-36\right.$ so $x^{2}-$ $\left.16 x+64+y^{2}-12 y+36=-36+36+64=64\right)$ and the centers are 10 units apart, so the circles have one point in common.
(c) Find an equation for the line connecting the centers of the circles.

Solution: The slope is $(6-0) /(8-0)=3 / 4$. Using the point-slope form, we have $y-0=(3 / 4)(x-0)$, or $y=3 x / 4$.
3. (35 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}+x-12}$

Solution: Factor both the numerator and the denominator so that you can remove the common factor $x-3$ from both. Then $\lim _{x \rightarrow 3} \frac{(x-3)(x-3)}{(x-3)(x+4)}=$ 0.
(b) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{3}-4 x^{2}+7 x-6}$

Solution: Factor both the numerator and the denominator so that you
can remove the common factor $x-2$ from both. Then $\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)\left(x^{2}-2 x+3\right)}=$ $\frac{12}{3}=4$.
(c) $\lim _{x \rightarrow 4} \frac{x-4}{x^{3}-64}$

Solution: Factor the denominator to get $\lim _{x \rightarrow 4} \frac{x-4}{(x-4)\left(x^{2}+4 x+16\right)}=\lim _{x \rightarrow 4} \frac{1}{\left(x^{2}+4 x+16\right)}=$ 1/48
(d) $\lim _{x \rightarrow-3} \frac{x^{3}+27}{x+3}$

Solution: Factor the numerator to get $\lim _{x \rightarrow-3} \frac{(x+3)\left(x^{2}-3 x+9\right)}{x+3}=\lim _{x \rightarrow-3}\left(x^{2}-\right.$
$3 x+9)=27$.
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{x-2}$

Solution: The limit of both the numerator and the denominator is
0 , so we must do the fractional arithmetic. So we have $\lim _{x \rightarrow 2} \frac{\frac{1}{3 x}-\frac{1}{6}}{x-2}=$
$\lim _{x \rightarrow 2} \frac{\frac{2}{6 x}-\frac{x}{6 x}}{x-2}=\lim _{x \rightarrow 2}-\frac{x-2}{(6 x)(x-2)}=-1 / 12$.
(f) $\lim _{x \rightarrow 5} \frac{\sqrt{4 x+5}-5}{x-5}$

Solution: Rationalize the numerator to get $\lim _{x \rightarrow 5} \frac{(\sqrt{4 x+5}-5)(\sqrt{4 x+5}+5)}{(x-5)(\sqrt{4 x+5}+5)}=$
$\lim _{x \rightarrow 5} \frac{4 x-20}{(x-5)(\sqrt{4 x+5}+5)}=4 / 10=2 / 5$.
(g) $\lim _{x \rightarrow \sqrt{8}} \frac{x^{4}-64}{x^{2}-8}$

Solution: Factor the numerator and remove the common factor to get
$\lim _{x \rightarrow \sqrt{8}} \frac{\left(x^{2}-8\right)\left(x^{2}+8\right)}{x^{2}-8}=16$.
(h) $\lim _{x \rightarrow \infty} \frac{(2 x-3)^{2}(3 x+1)}{(6 x-1)^{3}}$

Solution: The degrees are the same, both 3, so the limit is the same as $\lim _{x \rightarrow \infty} \frac{12 x^{3}}{216 x^{3}}=1 / 18$.
4. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{\left(x^{2}-16\right)(2 x-3)}}{x^{2}-9}
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: Using the test interval technique, we see that the numerator is defined for when x belongs to $[-4,3 / 2] \cup[4, \infty)$. The denominator is zero at $x=-3$ and $x=3$, so these two numbers must be removed. But 3 does not belong anyway. Thus, the domain is $[-4,-3) \cup(-3,3 / 2] \cup[4, \infty)$.
5. (12 points) Let $H(x)=\left(x^{2}-9\right)^{2}(2 x-3)^{2}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-9\right) \cdot 2 x(2 x-3)^{2}+2\left(x^{2}-9\right)^{2} \cdot 2(2 x-3) .
$$

Three of the zeros of $H^{\prime}(x)$ are $x= \pm 3$ and $x=3 / 2$. Find the other two.
Solution: Factor out the common terms to get $H^{\prime}(x)=4\left(x^{2}-9\right)(2 x-$ $3)\left[x(2 x-3)+\left(x^{2}-9\right)\right]$. One factor is $3 x^{2}-3 x-9$. Factor out the 3 and then apply the quadratic formula to get $x=\frac{1 \pm \sqrt{4-4 \cdot 3}}{2}$ which reduces to $x=\frac{1 \pm \sqrt{13}}{2}$.
6. (15 points) Let $f(x)=\left(x^{2}-4\right)^{4}$
(a) Find $f^{\prime}(x)$

Solution: Using the chain rule, we have $f^{\prime}(x)=4\left(x^{2}-4\right)^{3} \cdot 2 x$.
(b) Use the information you found in (a) to find an equation for the line tangent to f at the point $(3,625)$.
Solution: Since $f^{\prime}(3)=4(9-4)^{3} \cdot 2 \cdot 3=3000$, the tangent line is given by $y-625=3000(x-3)$.
(c) Find all the critical points of f.

Solution: Setting $f^{\prime}(x)=0$, we find three critical points, $x= \pm 2$ and $x=0$.
7. (18 points) If a ball is shot vertically upward from the roof of 128 foot building with a velocity of $256 \mathrm{ft} / \mathrm{sec}$, its height after t seconds is $s(t)=128+256 t-16 t^{2}$.
(a) What is the height the ball at time $t=1$?

Solution: $s(1)=368$.
(b) What is the velocity of the ball at the time it reaches its maximum height?
Solution: $s^{\prime}(t)=v(t)=0$ when the ball reaches its max height.
(c) What is the maximum height the ball reaches?

Solution: Solve $s^{\prime}(t)=256-32 t=0$ to get $t=8$ when the ball reaches its zenith. Thus, the max height is $s(8)=128+256(8)-16(8)^{2}=1152$.
(d) After how many seconds is the ball exactly 374 feet above the ground?

Solution: Use the quadratic formula to solve $128+256 t-16 t^{2}=374$. You get $t=16 \pm 8 \sqrt{3}$.
(e) How fast is the ball going the first time it reaches the height 374 feet?

Solution: Evaluate $s(t)$ when $t=16-8 \sqrt{3}$ to get $256(\sqrt{3}-1)$ feet per second.
(f) How fast is the ball going the second time it reaches the height 374 feet? Solution: Evaluate $s(t)$ when $t=16+8 \sqrt{3}$ to get $-(256(\sqrt{3}-1))$ feet per second. In other words the ball is going downward at the same rate it was moving upwards when first went through 374 feet.
8. (10 points) The demand curve for a new phone is given by $3 p+2 x=18$ where p is the price in hundreds of dollars and x is the number demanded in millions. The supply curve is given by $x-p^{2}+4 p=3$. Find the point of equilibrium.
Solution: Since $x=-3 p / 2+9$ and $x=p^{2}-4 p+3$, we can solve $-3 p / 2+9=$ $p^{2}-4 p+3$ for $p: p^{2}-4 p+3 p / 2+3-9=0$, so $p^{2}-5 p / 2-6=0$, so $2 p^{2}-5 p-12=0$, which can be solved by factoring. $(2 p+3)(p-4)=0$, which has $p=4$ and therefore $x=3$ as a solution.
9. (25 points) Let $f(x)=\sqrt{x^{2}-5}$.
(a) Let h be a positive number. What is the slope of the line passing through the points $(3, f(3))$ and $(3+h, f(3+h))$. Your answer depends on h, of course. Suppose your answer is called $G(h)$.
Solution: Letting $\left(x_{1}, y_{1}\right)=\left(3, f(3)\right.$ and $\left(x_{2}, y_{2}\right)=(3+h, f(3+h)$, we have $\frac{f(3+h)-f(3)}{3+h-3}=\frac{\sqrt{(3+h)^{2}-5}-\sqrt{3^{2}-5}}{h}$.
(b) Compute $\lim _{h \rightarrow 0} G(h)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the numerator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{4(3+h)^{2}-5}-\sqrt{9-5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(3+h)^{2}-5}-2}{h} \cdot \frac{\sqrt{(3+h)^{2}-5}+2}{\sqrt{(3+h)^{2}-5}+2} \\
& =\lim _{h \rightarrow 0} \frac{(3+h)-5-4}{h\left(\sqrt{(3+h)^{2}-5}+2\right)} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h\left(\sqrt{(3+h)^{2}-5}+2\right)} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h \sqrt{(3+h)^{2}-5}+2} \\
& =\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

(c) What is $f^{\prime}(3)$?

Solution: $f^{\prime}(3)=3 / 2$
(d) Write an equation for the tangent line at $x=3$.

Solution: The line is $y-2=3(x-3) / 2$.

