September 18, 2001
Your name
The first 6 problems count 4 points each and the final ones counts as marked. Problems 1 through 6 are multiple choice. In the multiple choice section, circle the correct choice (or choices). You do not need to show your work on problems 1 through 6 , but you must show your work on the other problems. The total number of points available is 125 .

1. Which of the following is a factor of $x^{4}-x$? Circle all those that apply.
(A) x
(B) $x-1$
(C) $x+1$
(D) $x^{2}+x+1$
(E) $x^{2}-x+1$
2. How many roots does the equation below have?

$$
x\left(x^{2}-3\right)-4\left(x^{2}-3\right)=0
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
3.

$$
\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=
$$

(A) $\frac{x+1}{x-1}$
(B) $\frac{x-1}{x+1}$
(C) $x-1$
(D) $1-x$
(E) x
4. What is the radius of the circle whose equation is given by $x^{2}-8 x+y^{2}+6 y=$ 24 ?
(A) 4
(B) $\sqrt{24}$
(C) 5
(D) 6
(E) 7
5. Which of the following is a solution to $2(5-3 x)-2 \cdot 5-3 x=108$? Circle all that apply.
(A) none
(B) -12
(C) -9
(D) -2
(E) 0
6. Which of the following is not a solution to $3(x-2)^{3}(x+1)^{2}-2(x-2)^{2}(x+1)^{3}=$ 0 ? Circle all that apply.
(A) -2
(B) -1
(C) 0
(D) 2
(E) 8

On all the following questions, show your work.
7. (7 points) Find all roots of the equation

$$
(x-1)(x+1)+(x-2)(x+1)=0 .
$$

8. (7 points) Rationalize the numerator of the expression $\frac{\sqrt{4+h}-2}{h}$, and express your answer in simplified form.
9. (7 points) Find a complete factorization of $x^{6}-64$.
10. (7 points) Find a symbolic representation of $f \circ g(x)$ in the case where $f(x)=$ $\sqrt{2 x}-5$ and $g(x)=7-x$. Then find the implied domain of $f \circ g(x)$
11. (7 points) The points $A=(0,0), B=(8,0)$, and $C=(3,6)$ are the vertices of triangle. Find the length of the longest side.
12. (7 points) What is the slope of the line joining the points $(-2, f(-2))$ and $(4, f(4))$, where f is the function defined by

$$
f(x)= \begin{cases}x^{2}-|x| & \text { if } x \leq 2 \\ 3 x-2 & \text { if } x>2\end{cases}
$$

13. (7 points) Find the (implied) domain of the function $f(x)=\frac{\sqrt{x}}{x-3}$.
14. (12 points) Suppose the functions f and g are given by the table of values shown. Complete the table by calculating the values of $f \circ g(x)$ and $g \circ f(x)$ for each of the values of x in the table.

x	$f(x)$	$g(x)$	$f \circ g(x)$	$g \circ f(x)$
0	2	1		
1	3	5		
2	2	1		
3	5	4		
4	4	3		
5	2	0		

15. (40 points) Evaluate each of the limits, or state that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+9 x-11}{2 x^{2}-4 x+23}$
(b) $\lim _{z \rightarrow 2} \frac{z^{3}-8}{z-2}$
(c) $\lim _{h \rightarrow 3} \frac{(2-h)^{2}+(2+h)^{2}}{h^{2}-3 h+6}$
(d) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$
(e) $\lim _{x \rightarrow 2} f(x)$ where

$$
f(x)= \begin{cases}(x-4)^{2} & \text { if } x<2 \\ 7 & \text { if } x=2 \\ 5 x-6 & \text { if } x>2\end{cases}
$$

