Math 1120 Calculus Test 1

June 4, 2001
 Name

The first 9 problems count 6 points for each part and the final 4 count as marked. The total number of points possible is 127 .

1. What is the y-intercept of the line passing through the points $(4,7)$ and $(8,2)$?

Solution: The slope is $\frac{2-7}{8-4}=\frac{-5}{4}$ so the line in question has point-slope form $y-7=-\frac{5}{4}(x-4)$ which in slope-intercept form is $y=-\frac{5}{4} x+12$ so the y-intercept is 12 .
2. What is the exact value of $|2 \sqrt{7}-5|-|7-3 \sqrt{7}|$?

Solution: Because $2 \sqrt{7}-5$ is positive, $|2 \sqrt{7}-5|=2 \sqrt{7}-5$ and because $|7-3 \sqrt{7}|$ is negative, $|7-3 \sqrt{7}|=-(7-3 \sqrt{7})=3 \sqrt{7}-7$. Therefore, $\mid 2 \sqrt{7}-$ $5|-|7-3 \sqrt{7}|=2 \sqrt{7}-5-3 \sqrt{7}+7=2-\sqrt{7}$
3. Express the value of $6^{9} \cdot 9^{6} \cdot 6^{6} \cdot 9^{9}$ in the form a^{b}.

Solution: $6^{9} \cdot 9^{6} \cdot 6^{6} \cdot 9^{9}=6^{15} \cdot 9^{15}=54^{15}$.
4. Consider the function f defined by:

$$
f(x)= \begin{cases}2 x^{2}-7 & \text { if } x<0 \\ 5 x-1 & \text { if } x \geq 0\end{cases}
$$

Find the slope of the line which goes through the points $(-2, f(-2))$ and ($3, f(3)$.
Solution: The slope is $\frac{14-1}{3-(-2)}=\frac{13}{5}$.
5. Consider the function f defined by:

$$
f(x)= \begin{cases}-2 x+5 & \text { if } x<1 \\ 5 & \text { if } x=1 \\ x^{2}+2 & \text { if } x>1\end{cases}
$$

Find $\lim _{x \rightarrow 1} f(x)$.
Solution: By the blotter test or by algebra, the limit is 3 .
6. The expression $\frac{1}{1+\sqrt{x}}$ is equivalent to
(A) $\frac{1+\sqrt{x}}{1-x}$
(B) $\frac{1+\sqrt{x}}{1+x}$
(C) $\frac{1-\sqrt{x}}{1-x}$
(D) $\frac{1-\sqrt{x}}{1+x}$
(E) $1+x$

Solution: C. Rationalize the numerator by multiplying by the fraction $1=$ $\frac{1-\sqrt{x}}{1-\sqrt{x}}$ to get $\frac{1-\sqrt{x}}{1-x}$.
7. What is the distance between the point $(4.5,10.5)$ and the midpoint of the segment joining the points $(2,4)$ and $(5,7)$?
Solution: The distance is $d=\sqrt{(3.5-4.5)^{2}+(5.5-10.5)^{2}}=\sqrt{26}$.
8. Suppose the functions f and g are given completely by the table of values shown.
$\left.\begin{array}{c|cc|c}x & f(x) & x & g(x) \\ \hline 0 & 2 & 0 & 5 \\ 1 & 7 & 1 & 7 \\ 2 & 5 & 2 & 4 \\ 3 & 1 & 3 & 2 \\ 4 & 3 & & 4 \\ 5 & 6 & 5 & 3 \\ 6 & 0 & 6 & 1 \\ 7 & 4 & & 7\end{array}\right)$
(a) What is $(f \div g)(5-1)$?

Solution: $(f \div g)(5-1)=f(4) / g(4)=3 / 6=1 / 2$.
(b) What is $f(g(5)+3)$?

Solution: $f(g(5)+3)=f(6)=0$.
(c) Find a value of x such that $g(f(x))=6$.

Solution: Since $g(4)=7$, we must find an x for which $f(x)=4 . x=7$ does the trick.
(d) What is $(g \circ f)(g(2)-f(3))$?

Solution: $(g \circ f)(g(2)-f(3))=g \circ f(4-1)=g(f(3)=g(1)=7$.
9. Find the product of the two roots of $6 x^{2}+70 x-24=0$.

Solution: Notice that $6 x^{2}+70 x-24=0$ can be factored into $2(3 x-1)(x+12)$ so the roots are $x=1 / 3$ and $x=-12$, the product of which is -4 .

Math 1120 Calculus Test 1

10. (10 points) Let $f(x)=x^{2}-x$. Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$.

Solution: Notice that $\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-(x+h)-\left(x^{2}-x\right)}{h}=\frac{x^{2}+2 x h+h^{2}-x-h-x^{2}+x}{h}$ $=\frac{2 x h+h^{2}-h}{h}=\frac{h(2 x+h-1)}{h}=2 x+h-1$.
11. (15 points) Let f and g be functions defined by $f(x)= \begin{cases}x^{2}-1 & \text { if } x<0 \\ 4-x & \text { if } x \geq 0\end{cases}$ and $g(x)=2 x+3$.
(a) Compute $f \circ g(-2), f \circ g(-1)$, and $f \circ g(0)$

Solution: $f \circ g(-2)=f(g(-2))=f(-1)=0$, $f \circ g(-1)=f(g(-1))=f(1)=3$, and $f \circ g(0)=f(3)=1$.
(b) Find a symbolic representation of $f \circ g(x)$

Solution: $f \circ g(x)= \begin{cases}(2 x+3)^{2}-1 & \text { if } 2 x+3<0 \\ 4-(2 x+3) & \text { if } 2 x+3 \geq 0\end{cases}$
Next, simplify to get

$$
f \circ g(x)= \begin{cases}4 x^{2}+12 x+8 & \text { if } x<-3 / 2 \\ 1-2 x & \text { if } x \geq-3 / 2\end{cases}
$$

12. (20 points) Compute the following limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Solution: Factor the numerator and cancel out the factor $x-2$ to get $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{x+2}{1}=4$.
(b) $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$

Solution: Factor the denominator and cancel out the factor $x-1$ to get $\lim _{x \rightarrow 1} \frac{1}{x^{2}+x+1}=1 / 3$.
(c) $\lim _{x \rightarrow 1} 2 x^{3} \sqrt{2 x+7}$

Solution: Just replace all the x 's with the number 1 to get $2 \cdot 1^{3} \sqrt{2+7}=$ $2 \cdot 3=6$.
(d) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{1+x^{2}}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just $2 / 1=2$.
13. (10 points) Describe in English what it means to say that the limit of a function f is 3 as x approaches 2 . Sketch a graph of a function which has this property but also satisfies $f(3)=1$.
Solution: It means that when x is close to (but not equal to) $2, f(x)$ is close to 3 .

