January 31, 2001

Name

\qquad
The first 8 problems count 7 points each and the final 4 count as marked.

1. Fill in the three character code you received via email in the box \square

Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.
2. Which of the following numbers belong to the (implied) domain of

$$
f(x)=\frac{\sqrt{x-2}}{x-4} ?
$$

Circle all those that apply.
(A) -2
(B) 2
(C) 3
(D) 4
(E) 5

Solution: The domain includes all real numbers greater than or equal to 2 except 4 , which makes the denominator zero. Thus, 2 , 3 , and 5 all belong to the domain.
3. What is the y-intercept of the line defined by $\frac{x}{3}+\frac{y}{6}=2$?
(A) -2
(B) 4
(C) 6
(D) 12
(E) 16

Solution: The y-intercept is the point on the line for which $x=0$. Solving for y gives $y=12$.
4. Let $f(x)=2 x+3$ and $g(x)=3 x-3$. Which of the following does not belong to the domain of f / g ?
(A) 1
(B) 3
(C) 6
(D) 9
(E) The domain of f / g is the set of all real numbers.

Solution: Only a number for which g is zero fails to be in the domain. Solving $3 x-3=0$ yields $x=1$.
5. Referring to the f and g of the previous problem, what is the value of $g(f(g(3)))$?
(A) -3
(B) 15
(C) 42
(D) 45
(E) 54

Solution: $g(f(g(3)))=g(f(9-3))=g(2 \cdot 6+3)=3 \cdot 15-3=42$.
6. Let $f(x)=x^{2}+1$. Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$.
(A) $h-2$
(B) $2 x-2 h+h^{2}$
(C) $2 x+h$
(D) $2 x+h+2$
(E) $x^{2}+2 h+2$

Solution: Simplify $\frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h}$ to get $\frac{\left.x^{2}+2 x h+h^{2}+1-x^{2}-1\right)}{h}=\frac{2 x h+h^{2}}{h}$, whereupon, the h can be factored from the numerator and cancelled with the h in the denominator to yield $2 x+h$.
Suppose the functions f and g are given completely by the table of values shown.

x	$f(x)$	x	$g(x)$
0	2		0
1	7		5
2	5		2
3		4	
3			3
4	3		2
5	6		6
6	0		3
7	1		
7	4		7
		0	

7. Solve the equation $f \circ g(x)=7$?
(A) 1
(B) 3
(C) 4
(D) 5
(E) 6

Solution: Since $f(1)=7$, it must be the case that $g(x)=1$. This is true only when $x=6$.
8. Compute $(f \cdot g)(g(3))$?
(A) 18
(B) 20
(C) 24
(D) 28
(E) 30

Solution: $(f \cdot g)(g(3))=f(2) \cdot g(2)=5 \cdot 4=20$.
On all the following questions, show your work.
9. (20 points) Let f and g be functions defined by $f(x)= \begin{cases}x^{2}-1 & \text { if } x<0 \\ 4-x & \text { if } x \geq 0\end{cases}$ and $g(x)=2 x+3$.
(a) Compute $g \circ f(-1), g \circ f(0)$, and $g \circ f(1)$

Solution: Note that $g \circ f(-2)=g(3)=9, g \circ f(-1)=g(0)=3$, $g \circ f(0)=g(4)=11$, and $g \circ f(1)=g(3)=9$
(b) Find a symbolic representation of $g \circ f(x)$

Solution: $g \circ f(x)= \begin{cases}\left.2\left(x^{2}-1\right)\right)+3 & \text { if } x<0 \\ 2(4-x)+3 & \text { if } x \geq 0\end{cases}$
Next, simplify to get

$$
g \circ f(x)= \begin{cases}2 x^{2}+1 & \text { if } x<0 \\ 11-2 x & \text { if } x \geq 0\end{cases}
$$

10. (10 points) Cowling's Rule can be used to calculate drug doses for children. If a is the adult dosage and t is the age of the child in years, then the child's dosage is

$$
D(t)=\left(\frac{t+1}{24}\right) a .
$$

If the adult dosage for a certain drug is 300 mg and the child is 5 years old, how much drug should be prescribed?

Solution: $D(5)=\frac{5+1}{24} \cdot 300=75$.
11. (25 points) Compute each of the following limits.
(a) Let $f(x)= \begin{cases}x+2 & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}$
$\lim _{x \rightarrow 1} f(x)$
Solution: Use the blotter test to see that $f(x)$ is close to 3 when x is close (but not equal) to 1 .
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Solution: Factor the numerator and cancel out the factor $x-2$ to get $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{x+2}{=} 4$.
(c) $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$

Solution: Factor the denominator and cancel out the factor $x-1$ to get $\lim _{x \rightarrow 1} \frac{1}{x^{2}+x+1}=1 / 3$.
(d) $\lim _{x \rightarrow 3} 2 x^{3} \sqrt{x^{2}+7}$

Solution: Just replace all the x 's with the number 3 to get $2 \cdot 3^{3} \sqrt{9+7}=$ $54 \cdot 4=216$.
(e) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{1+x^{2}}$

Solution: We are looking for the horizontal asymptote, which by the asymptote theorem is just $2 / 1=2$.
12. (15 points) Describe in English what it means to say that "the limit of a function f is 2 as x approaches 1 ". Sketch a graph of a function which has this property but also satisfies $f(1)=3$.
Solution: It means that when x is close to, but not equal to, $1, f(x)$ is close (and possibly equal) to 2 . A function with the desired properties is given below.

