February 12, $2014 \quad$ Name
The problems count as marked. The total number of points available is 174. Throughout this test, show your work.

1. (10 points) A line L is given by the equation $2 x+3 y=6$. Another line L^{\prime} perpendicular to L passes through the point $(2,5)$. Find the y-intercept of L^{\prime}. Then find the x-intercept of L^{\prime}.
Solution: The slope of L is $-2 / 3$, so the slope of L^{\prime} is $3 / 2$. An equation for L^{\prime} is therefore $y-5=(3 / 2)(x-2)$. When $x=0$, we get $y=2$. On the other hand, the x-intercept is the value of x when $y=0$, which is $x=-4 / 3$.
2. (10 points) Find all solutions to $||3 x-5|-3|=4$.

Solution: First note that $|3 x-5|-3$ could be either 4 or -4 . That is, $|3 x-5|-3=4$ or $|3 x-5|-3=-4$. Thus either $|3 x-5|=7$ or $|3 x-5|=-1$. The first can be solved, the second cannot. The solutions are $x=4$ and $x=-2 / 3$.
3. (10 points) Find the exact value of the expression

$$
|3 \pi-8|+|2 \pi-4|+|5 \pi-17| .
$$

Use the symbol π in your answer if you need to.
Solution: Using the definition of absolute value, we have $3 \pi-8+2 \pi-4-$ $(5 \pi-17)=-8-4+17=5$.
4. (10 points) What is the distance from the center of the circle $x^{2}+y^{2}+4 y=21$ to the point $(3,2)$? Is the point $(3,2)$ inside, outside, or on the the circle?
Solution: Complete the square to find the center and radius. $x^{2}+y^{2}+4 y+4=$ 25 , so $(x-0)^{2}+(y+2)^{2}=5^{2}$ and we see that the circle has center $(0,-2)$ and radius $r=5$. The distance from $(0,-2)$ to $(3,2)$ is $\sqrt{3^{2}+4^{2}}=5$, so the point is on the circle.
5. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow-\infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{3}}$

Solution: The degree of the numerator is 4 while the degree of the denominator is 6 , so the limit is 0 .
(b) $\lim _{x \rightarrow 1} \frac{(x+1)^{2}-4}{(x+2)^{2}-9}$

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 1} \frac{(x-1)(x+3)}{(x-1)(x+5)}=$ $\lim _{x \rightarrow 1} \frac{(x+3)}{(x+5)}=2 / 3$
(c) $\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}$.

Solution: Do the fractional arithmetic to get $\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(x+h)(x)}$ which is found to be $-\frac{1}{x^{2}}$.
(d) $\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+3\right)^{3}}{\left(3 x^{3}+x-2\right)^{2}}$

Solution: The numerator has the form $8 x^{6}+\cdots$ while the denominator has the form $9 x^{6}+\cdots$ so the limit is $8 / 9$.
(e) $\lim _{h \rightarrow 0} \frac{\sqrt{25+2 h}-5}{h}$

Solution: Rationalize the numerator to get $\lim _{h \rightarrow 0} \frac{\sqrt{25+2 h}-5}{h}$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{25+2 h}-5)(\sqrt{25+2 h}+5)}{h(\sqrt{25+2 h}+5)}$. This reduces to $\lim _{h \rightarrow 0} \frac{(\sqrt{25+2 h}-5)(\sqrt{25+2 h}+5)}{h(\sqrt{25+2 h}+5)}=$ $\frac{25+2 h-25}{h(\sqrt{25+2 h}+5)}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{25+2 h}+5}=\frac{2}{2 \sqrt{25}}=\frac{1}{5}$.
(f) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$

Solution: Factor $x^{3}-27$ into $(x-3)\left(x^{2}+3 x+9\right)$ and remove the $x-3$'s from the fraction. Then the limit is $3^{2}+3 \cdot 3+9=27$.
6. (12 points) The points $(1,0),(5,1),(u, v)$, and $(0,4)$ are the vertices of a square. Find u and v.
Solution: One way to think about this is line segment through $(5,1)$ and (u, v) must have the same slope and length as the segment from $(1,0)$ to $(0,4)$. But an easier way to think about this is that $(0,4)$ is up 4 and over 1 from $(1,0)$, so (u, v) must be up 4 and over 1 from $(5,1)$, That is $(u, v)=(5-1,1+4)=(4,5)$.
7. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x^{2}-2 x-3}}{x-9} .
$$

Express your answer as a union of intervals. That is, use interval notation.
Solution: The numerator is defined for $(x+1)(x-3) \geq 0$, that is $(-\infty,-1) \cup$ $(3, \infty)$. The denominator is zero at $x=9$, so this number must be removed. We need to include the numbers $x=-1$ and $x=3$ and pluck out the 9 . Thus, the domain is $(-\infty,-1] \cup[3,9) \cup(9, \infty)$.
8. (12 points) Let $H(x)=\left(x^{2}-4\right)^{2}(x-3)^{3}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-4\right) \cdot 2 x(x-3)^{3}+\left(x^{2}-4\right)^{2} \cdot 3(x-3)^{2} .
$$

Find all five zeros of $H^{\prime}(x)$.
Solution: Factor out the common terms to get $H^{\prime}(x)=\left(x^{2}-4\right)(x-3)^{2}\left[3\left(x^{2}-\right.\right.$ $4)+4 x(x-3)]$. One factor is $4 x(x-3)+3\left(x^{2}-4\right)=7 x^{2}-12 x-12$. Apply the quadratic formula to get $x=\frac{12 \pm \sqrt{144+12 \cdot 28)}}{14}$ which reduces to $x=\frac{12 \pm 4 \sqrt{30}}{14}=$ $\frac{6 \pm 2 \sqrt{30}}{7}$. The other three zeros are $x=3$ and $x= \pm 2$.
9. (21 points) Let

$$
f(x)= \begin{cases}2 x+3 & \text { if }-1<x \leq 0 \\ |x-3| & \text { if } 0<x<4 \\ 2 & \text { if } x=4 \\ 5-x & \text { if } 4<x \leq 6\end{cases}
$$

(a) What is the domain of f ? Express your answer in interval notation.

Solution: $(-1,0] \cup(0,4) \cup\{4\} \cup(4,6]=(-1,6]$.
(b) What is $\lim _{x \rightarrow 0^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 2 x+3=3$.
(c) What is $\lim _{x \rightarrow 0^{+}} f(x)$?

Solution: $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}|x-3|=3$.
(d) Is f continuous at $x=0$? Discuss why or why not.

Solution: f is continuous at $x=0$ because $f(0)=\lim _{x \rightarrow 0} f(x)=3$.
(e) What is $\lim _{x \rightarrow 4^{-}} f(x)$?

Solution: $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}|x-3|=1$.
(f) What is $\lim _{x \rightarrow 4^{+}} f(x)$?

Solution: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}|x-3|=1$.
(g) Is f continuous at $x=4$? Discuss why or why not.

Solution: f is not continuous at $x=4$ because $f(4)=2 \neq \lim _{x \rightarrow 2} f(x)=$ $\lim _{x \rightarrow 2} 5-x=1$.
10. (20 points) Let $f(x)=\sqrt{3 x-2}$.
(a) Let h be a positive number. What is the slope of the line passing through the points $(6, f(6))$ and $(6+h, f(6+h))$. Your answer depends on h, of course. Suppose your answer is called $G(h)$.
Solution: $\frac{\sqrt{3(6+h)-2}-4}{h}$, since $f(6)=4$.
(b) Compute $\lim _{h \rightarrow 0} G(h)$.

Solution: Since we get zero over zero, we recall that, in this case, we should rationalize the denominator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{3(6+h)-2}-\sqrt{36-2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3(6+h)-2}-\sqrt{36-2}}{h} \cdot \frac{\sqrt{3(6+h)-2}+\sqrt{36-2}}{\sqrt{3(6+h)-2}+\sqrt{36-2}} \\
& =\lim _{h \rightarrow 0} \frac{3(6+h)-2-(36-2)}{h(\sqrt{3(6+h)-2}+\sqrt{36-2})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3(6+h)-2}+\sqrt{36-2})} \\
& =\lim _{h \rightarrow 0} \frac{3}{(\sqrt{3(6+h)-2}+\sqrt{3 \cdot 6-2})} \\
& =\frac{3}{2(\sqrt{3 \cdot 6-2})}=\frac{3}{8}
\end{aligned}
$$

(c) Your answer to (2) is the slope of the line tangent to the graph of f at the point $(6, f(6))$. In other words, your answer is $f^{\prime}(6)$. Write and equation for the tangent line.
Solution: The line is $y-4=3(x-6) / 8$, or $y=3 x / 8+7 / 4$.
11. (12 points) Let $f(x)=(2 x-3)^{5}\left(5 x^{2}-1\right)+17 x^{5}$, let $g(x)=(x-4)^{4}\left(8 x^{3}\right)-2 x^{4}$.
(a) What is the degree of the polynomial $f-g$?

Solution: 7
(b) What is the degree of the polynomial $f \cdot g$?

Solution: 14
(c) Estimate within one tenth of a unit the value of $f(10000) / g(10000)$.

Solution: Any answer between 19.9 and 20.1 works. See the next part.
(d) Compute $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$.

Solution: $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{(2 x)^{5}\left(5 x^{2}\right)}{x^{4} \cdot 8 x^{3}}=\lim _{x \rightarrow \infty} \frac{160 x^{7}}{8 x^{7}}=20$ because the degree of the denominator is the same as that of the numerator.
12. (15 points) Recall that the Intermediate Value Theorem guarantees that for any function f continuous over the interval $[a, b]$ and for any number M between $f(a)$ and $f(b)$, there exists a number c such that $f(c)=M$. The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
Solution: Suppose you picked $b=2$. Then $f(a)=1 / 2$ and $f(b)=2 / 3$. You could choose $M=3 / 5$.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.
Solution: To solve $f(c)=3 / 5$, write $\frac{1}{1+\frac{1}{x}}=3 / 5$, from which we get $5=3+3 / x$ and then $3 / x=2$, so $x=3 / 2$. Indeed $3 / 2$ is between 1 and 2 , as required.

