February 12, $2014 \quad$ Name
The problems count as marked. The total number of points available is 174 . Throughout this test, show your work.

1. (10 points) A line L is given by the equation $2 x+3 y=6$. Another line L^{\prime} perpendicular to L passes through the point $(2,5)$. Find the y-intercept of L^{\prime}. Then find the x-intercept of L^{\prime}.
2. (10 points) Find all solutions to $||3 x-5|-3|=4$.
3. (10 points) Find the exact value of the expression

$$
|3 \pi-8|+|2 \pi-4|+|5 \pi-17|
$$

Use the symbol π in your answer if you need to.
4. (10 points) What is the distance from the center of the circle $x^{2}+y^{2}+4 y=21$ to the point $(3,2)$? Is the point $(3,2)$ inside, outside, or on the the circle?
5. (30 points) Evaluate each of the limits indicated below.
(a) $\lim _{x \rightarrow-\infty} \frac{3 x^{4}-6}{\left(11-3 x^{2}\right)^{3}}$
(b) $\lim _{x \rightarrow 1} \frac{(x+1)^{2}-4}{(x+2)^{2}-9}$
(c) $\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}$.
(d) $\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+3\right)^{3}}{\left(3 x^{3}+x-2\right)^{2}}$
(e) $\lim _{h \rightarrow 0} \frac{\sqrt{25+2 h}-5}{h}$
(f) $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$
6. (12 points) The points $(1,0),(5,1),(u, v)$, and $(0,4)$ are the vertices of a square. Find u and v.
7. (12 points) Find the domain of the function

$$
g(x)=\frac{\sqrt{x^{2}-2 x-3}}{x-9} .
$$

Express your answer as a union of intervals. That is, use interval notation.
8. (12 points) Let $H(x)=\left(x^{2}-4\right)^{2}(x-3)^{3}$. Using the chain rule and the product rule,

$$
H^{\prime}(x)=2\left(x^{2}-4\right) \cdot 2 x(x-3)^{3}+\left(x^{2}-4\right)^{2} \cdot 3(x-3)^{2} .
$$

Find all five zeros of $H^{\prime}(x)$.
9. (21 points) Let

$$
f(x)= \begin{cases}2 x+3 & \text { if }-1<x \leq 0 \\ |x-3| & \text { if } 0<x<4 \\ 2 & \text { if } x=4 \\ 5-x & \text { if } 4<x \leq 6\end{cases}
$$

(a) What is the domain of f ? Express your answer in interval notation.
(b) What is $\lim _{x \rightarrow 0^{-}} f(x)$?
(c) What is $\lim _{x \rightarrow 0^{+}} f(x)$?
(d) Is f continuous at $x=0$? Discuss why or why not.
(e) What is $\lim _{x \rightarrow 4^{-}} f(x)$?
(f) What is $\lim _{x \rightarrow 4^{+}} f(x)$?
(g) Is f continuous at $x=4$? Discuss why or why not.
10. (20 points) Let $f(x)=\sqrt{3 x-2}$.
(a) Let h be a positive number. What is the slope of the line passing through the points $(6, f(6))$ and $(6+h, f(6+h))$. Your answer depends on h, of course. Suppose your answer is called $G(h)$.
(b) Compute $\lim _{h \rightarrow 0} G(h)$.
(c) Your answer to (2) is the slope of the line tangent to the graph of f at the point $(6, f(6))$. In other words, your answer is $f^{\prime}(6)$. Write and equation for the tangent line.
11. (12 points) Let $f(x)=(2 x-3)^{5}\left(5 x^{2}-1\right)+17 x^{5}$, let $g(x)=(x-4)^{4}\left(8 x^{3}\right)-2 x^{4}$.
(a) What is the degree of the polynomial $f-g$?
(b) What is the degree of the polynomial $f \cdot g$?
(c) Estimate within one tenth of a unit the value of $f(10000) / g(10000)$.
(d) Compute $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$.
12. (15 points) Recall that the Intermediate Value Theorem guarantees that for any function f continuous over the interval $[a, b]$ and for any number M between $f(a)$ and $f(b)$, there exists a number c such that $f(c)=M$. The function $f(x)=\frac{1}{1+\frac{1}{x}}$ is continuous for all $x>0$. Let $a=1$.
(a) Pick a number $b>1$ (any choice is right), and then find a number M between $f(a)$ and $f(b)$.
(b) Show that the conclusion to the Intermediate Value Theorem is satisfied by finding a number c in (a, b) such that $f(c)=M$.

