February 9, 2006
Name
The problems count as marked. The total number of points available is 161 . Throughout this test, show your work.

1. (18 points) Consider the function F whose graph is given below. Evaluate each of the following expressions. Note: Enter 'DNE' if the limit does not exist. The tick marks are one unit apart.

(a) $\lim _{x \rightarrow-1^{-}} F(x)=0$
(b) $\lim _{x \rightarrow-1^{+}} F(x)=-1$
(c) $\lim _{x \rightarrow-1} F(x)=D N E$
(d) $F(-1)=-1$
(e) $\lim _{x \rightarrow 1^{-}} F(x)=-1$
(f) $\lim _{x \rightarrow 1^{+}} F(x)=-1$
(g) $\lim _{x \rightarrow 1} F(x)=-1$
(h) $\lim _{x \rightarrow 3} F(x)=1$
(i) $F(3)=1$
2. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow-7} \frac{x^{2}+8 x+7}{x+7}
$$

Solution: Factor and cancel the $x+7$ to get

$$
\lim _{x \rightarrow-7} x+1=-6
$$

3. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}+3 x-10}
$$

Solution: Factor and cancel the $x-2$ to get

$$
\lim _{x \rightarrow 2} \frac{1}{x+5}=1 / 7
$$

4. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}
$$

Solution: Factor and eliminate the $x^{2}-1$ to get

$$
\lim _{x \rightarrow 1} x^{2}+1=2
$$

5. (6 points) Evaluate the limit

$$
\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}
$$

Solution: Rationalize the denominator to get

$$
\lim _{t \rightarrow 9} \frac{(9-t)(3+\sqrt{t})}{9-t}=6
$$

6. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{x-4}
$$

Solution: Do the fraction arithmetic, noting that $4-x=-(x-4)$, so the limit is $-1 / 16$.
7. (8 points) Find the midpoint of the segment joining $(6,3)$ and $(-2,7)$. Then find the distance from that midpoint to the point $(1,0)$.
Solution: The midpoint of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\left(x_{1}+x_{2}\right) / 2,\left(y_{1}+y_{2}\right) / 2\right)$, so the midpoint in question is $(6-2) / 2,(3+7) / 2)=(2,5)$, and its distance to the origin is $\sqrt{1^{2}+5^{2}}=\sqrt{26}$.
8. (8 points) Let a polynomial be defined by $p(x)=(2 x-3)^{4}(x-1)(3 x+5)^{3}$. What is the degree of p ? When p is written in standard form $a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{1} x+a_{0}$ where $a_{n} \neq 0$, what is a_{8} ? What is a_{0} ?
Solution: The product of the three factors has degree $n=4+1+3=8$. The first factor is $(2 x-3)^{4}=16 x^{4}+\ldots$ while the third one is $(3 x+5)^{3}=27 x^{3}+\ldots$. Therefore the coefficient a_{8} of x^{8} is just the the product $16 \cdot 27=432$ and $a_{0}=-10125$.
9. (18 points) Let

$$
f(x)= \begin{cases}9 & \text { if } x<-5 \\ -2 x+8 & \text { if }-5 \leq x<2 \\ 0 & \text { if } x=2 \\ 4 & \text { if } x>2\end{cases}
$$

Sketch the graph of this function and find following limits if they exist (if not, enter DNE).
(a) $\lim _{x \rightarrow 2^{-}} f(x)=4$
(b) $\lim _{x \rightarrow 2^{+}} f(x)=4$
(c) $\lim _{x \rightarrow 2} f(x)=4$
(d) $\lim _{x \rightarrow-5^{-}} f(x)=9$
(e) $\lim _{x \rightarrow-5^{+}} f(x)=18$
(f) $\lim _{x \rightarrow-5} f(x) D N E$
10. (12 points) Consider the function whose properties are displayed.

a	-1	0	1	2	3	4
$\lim _{x \rightarrow a^{-}} f(x)$	DNE	1	1	3	2	3
$\lim _{x \rightarrow a^{+}} f(x)$	1	1	1	3	2	DNE
$f(a)$	1	1	-1	3	2	3
$\lim _{x \rightarrow a^{-}} g(x)$	4	1	3	3	1	0
$\lim _{x \rightarrow a^{+}} g(x)$	1	2	3	3	1	DNE
$g(a)$	1	-1	3	3	1	0

Using the table above calculate the limits below. Enter 'DNE' if the limit doesn't exist OR if limit can't be determined from the information given.
(a) $\lim _{x \rightarrow-1^{-}}[f(x)+g(x)]$

Solution: DNE
(b) $\lim _{x \rightarrow 3}[f(x)+g(x)]$

Solution: 3
(c) $f(1) g(1)$

Solution: -3
(d) $f(2)+g(0)$

Solution: 2

(e) Find all points (in the table) at which f is discontinuous.

Solution: $x=-1,1,4$
11. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{2+4 x}{9-2 x}
$$

Solution: By the asymptote theorem, $y=4 /(-2)=-2$ is the horizontal asymptote.
12. (6 points) Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-10 x^{2}-3 x}{7-6 x-10 x^{4}}
$$

Solution: Similarly,

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-10 x^{2}-3 x}{7-6 x-10 x^{4}}=\lim _{x \rightarrow \infty} \frac{2 x^{3}}{-10 x^{4}}=0
$$

, because the degree of the denominator is larger than that of the numerator.
13. (8 points) Find the (implied) domain of

$$
f(x)=\frac{\sqrt{x-7}}{(x-2)(x-9)}
$$

and write your answer in interval notation.
Solution: The domain D includes all real numbers greater than or equal to 7 except 9 , which must be eliminated because it makes the denominator zero. Thus, $D=[7,9) \cup(9, \infty)$.
14. (8 points) Find all the x-intercepts of the function

$$
g(x)=3(2 x-7)^{3}(2 x+1)^{2}-6(2 x-7)^{2}(2 x+1)^{3} .
$$

Solution: Factor the common stuff out to get $3(2 x-1)^{2}(x-1)^{2}[2 x-7-$ $2(2 x+1)]$. Setting each of the three factors to zero yields $x=-1 / 2, x=7 / 2$, and $x=-9 / 2$.
15. (8 points) Compute the exact value of $|6 \pi-10 \sqrt{2}|+|6 \pi-20|-|5 \sqrt{2}-8|$. No points for a decimal approximation.
Solution: $|6 \pi-10 \sqrt{2}|+|6 \pi-20|-|5 \sqrt{2}-8|=6 \pi-10 \sqrt{2}+20-6 \pi-[8-5 \sqrt{2}]=$ $12-5 \sqrt{2}$, because $6 \pi-10 \sqrt{2}>0,6 \pi-20<0$ and $5 \sqrt{2}-8<0$. Thus $|6 \pi-10 \sqrt{2}|=10 \sqrt{2}-6 \pi,|6 \pi-20|=20-6 \pi$, and $-|5 \sqrt{2}-8|=-(8-5 \sqrt{2})$.
16. (8 points) Find an equation for a line perpendicular to the line $2 x-5 y=11$ and which goes through the point $(-2,6)$.

Solution: The given line has slope $2 / 5$ so the one perpendicular has slope $-5 / 2$. Hence $y-6=(-5 / 2)(x+2)$. Thus $y=-5 x / 2+1$.
17. (8 points) Suppose $f(x)=\sqrt{3 x-1}$ and $g(x)=x^{2}+4$. Find the two composite functions
(a) $f \circ g(x)$

Solution: $f \circ g(x)=\sqrt{3 x^{2}+11}$.
(b) $g \circ f(x)$

Solution: $g \circ f(x)=3 x-1+4=3 x+3$.
18. (15 points) Let $f(x)=\sqrt{2 x-1}$.
(a) Find the slope of the line joining the points $(5,3)$ and $(x, f(x))$, where $x \neq 5$.
Solution: $\frac{\sqrt{2 x-1}-3}{x-5}$.
(b) Then find the limit of the expression in (a) as $x \rightarrow 5$. Call this limit $f^{\prime}(5)$.
Solution: $\lim _{x \rightarrow 5} \frac{\sqrt{2 x-1}-3}{x-5}=\lim _{x \rightarrow 5} \frac{(2 x-1)-9}{(x-5)(\sqrt{2 x-1}+3)}=1 / 3$.
(c) Use the information found in (b) to write an equation for the line tangent to the graph of f at the point $(5,3)$.
Solution: $y-3=(1 / 3)(x-5)$, so $y=x / 3+4 / 3$.

