\qquad
On all the following questions, show your work.

1. (10 points) Find the exact value of $|\sqrt{2}-2|-|2-3 \sqrt{2}|$. Leave your answer in radical form. No credit for a decimal answer.
Solution: $|\sqrt{2}-2|-|2-3 \sqrt{2}|=2-\sqrt{2}-(3 \sqrt{2}-2)=4-4 \sqrt{2}$.
2. (10 points) Find all values of x such that $-3 \leq 2 x-3 \leq 6$.

Solution: Add 3 to all three parts to get $-3+3 \leq 2 x-3+3 \leq 6+3$ which is equivalent to $0 \leq 2 x \leq 9$ which is equivalent to $0 \leq x \leq 9 / 2$.
3. (10 points) Find all roots of the equation

$$
(x-1)(x+1)+(x-2)(x+1)=0 .
$$

Solution: Factor $(x-1)(x+1)+(x-2)(x+1)$ to get $(x+1)((x-1)+(x-2))=$ $(x+1)(2 x-3)=0$, which has two roots, $x=-1$ and $x=3 / 2$.
4. (10 points) Rationalize the numerator of the expression $\frac{\sqrt{4+h}-2}{h}$, and express your answer in simplified form.
Solution: $\quad \frac{\sqrt{4+h}-2}{h}=\frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}=\frac{4+h-4}{h(\sqrt{4+h}+2)}=\frac{1}{\sqrt{4+h+2}}$.
5. (15 points) A. What is the distance between $(-3,5)$ and $(6,8)$?

Solution: $D=\sqrt{(-3-6)^{2}+(8-5)^{2}}=\sqrt{81+9}=3 \sqrt{10}$
B. The points $A=(0,0), B=(8,0)$, and $C=(x, y)$ are the vertices of an equilateral triangle (i.e., all the sides have the same length). Find x and y. Write your answers in decimal form.
Solution: Because of the symmetry, the x coordinate must be 4 . The y coordinate satisfies $\sqrt{4-0)^{2}+(y-0)^{2}}=8$, which yields $y=\sqrt{48}=4 \sqrt{3}$.
6. (10 points) What is the slope of the line joining the points $(-2, f(-2))$ and $(4, f(4))$, where f is the function defined by

$$
f(x)= \begin{cases}x^{2}-|x| & \text { if } x \leq 2 \\ 3 x-2 & \text { if } x>2\end{cases}
$$

Solution: The slope is $\frac{f(4)-f(-2)}{4-(-2)}=\frac{10-2}{6}=4 / 3$.
7. (10 points) The supply function for an item is given by $p=s(x)=0.1 x^{2}-12 x+$ 700 and the demand function is given by $p=d(x)=0.1 x^{2}+8 x-380$, where p is measured in dollars and x is the number of items. Find the equilibrium point. That is, find the number x of items produced needed to equalize the supply and demand.

Solution: Set the two quadratics equal to one another, and notice that the second degree terms cancel to yield the linear equation $-12 x+700=+8 x-380$ or equivalently, $20 x=1080$, so $x=54$.
8. (40 points) Evaluate each of the limits, or state that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+9 x-11}{2 x^{2}-4 x+23}$.

Solution: The limit is just the ratio of the two coefficients of x^{2}, or $1 / 2$.
(b) $\lim _{z \rightarrow 2} \frac{z^{3}-8}{z-2}$.

Solution: The numerator factors into $(z-2)\left(z^{2}+2 z+4\right)$, so the limit is just the value of $\left(z^{2}+2 z+4\right)$ at $z=2$, which is 12 .
(c) $\lim _{h \rightarrow 3} \frac{(2-h)^{2}+(2+h)^{2}}{h^{2}-3 h+6}$.

Solution: Just evaluate the numerator and denominator at $h=3$ to get $\frac{1^{2}+5^{2}}{9-9+6}=26 / 6=13 / 3$.
(d) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$.

Solution: The denominator factors into $(x-3)(x+3)$, so the limit is just the value of $\frac{1}{x+3}$ at $x=3$, that is, $1 / 6$.
(e) $\lim _{x \rightarrow 2} f(x)$ where

$$
f(x)= \begin{cases}(x-4)^{2} & \text { if } x<2 \\ 7 & \text { if } x=2 \\ 5 x-6 & \text { if } x>2\end{cases}
$$

Solution: Cover the left side of the graph to find the right limit, which is the value you get from the $5 x-6$ piece, namely 4 . Then cover the right half to get the left limit, $\lim _{x \rightarrow 2^{-}}(x-4)^{2}$, which is also 4 . Hence the limit is 4 .

