\qquad
On all the following questions, show your work.

1. (10 points) Find the exact value of $|\sqrt{2}-2|-|2-3 \sqrt{2}|$. Leave your answer in radical form. No credit for a decimal answer.
2. (10 points) Find all values of x such that $-3 \leq 2 x-3 \leq 6$.
3. (10 points) Find all roots of the equation

$$
(x-1)(x+1)+(x-2)(x+1)=0 .
$$

4. (10 points) Rationalize the numerator of the expression $\frac{\sqrt{4+h}-2}{h}$, and express your answer in simplified form.
5. (15 points) A. What is the distance between $(-3,5)$ and $(6,8)$?
B. The points $A=(0,0), B=(8,0)$, and $C=(x, y)$ are the vertices of an equilateral triangle (i.e., all the sides have the same length). Find x and y. Write your answers in decimal form.
6. (10 points) What is the slope of the line joining the points $(-2, f(-2))$ and $(4, f(4))$, where f is the function defined by

$$
f(x)= \begin{cases}x^{2}-|x| & \text { if } x \leq 2 \\ 3 x-2 & \text { if } x>2\end{cases}
$$

7. (10 points) The supply function for an item is given by $p=s(x)=0.1 x^{2}-12 x+$ 700 and the demand function is given by $p=d(x)=0.1 x^{2}+8 x-380$, where p is measured in dollars and x is the number of items. Find the equilibrium point. That is, find the number x of items produced needed to equalize the supply and demand.
8. (40 points) Evaluate each of the limits, or state that it does not exist.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+9 x-11}{2 x^{2}-4 x+23}$
(b) $\lim _{z \rightarrow 2} \frac{z^{3}-8}{z-2}$
(c) $\lim _{h \rightarrow 3} \frac{(2-h)^{2}+(2+h)^{2}}{h^{2}-3 h+6}$
(d) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$
(e) $\lim _{x \rightarrow 2} f(x)$ where

$$
f(x)= \begin{cases}(x-4)^{2} & \text { if } x<2 \\ 7 & \text { if } x=2 \\ 5 x-6 & \text { if } x>2\end{cases}
$$

