February 6, 1998 Name

The first 10 problems count 7 points each and the final 2 count 20 points each.

1. Fill in your three character code you received via email in the box \qquad

Multiple choice section. Circle the correct choice. You do not need to show your work on these problems.
2. What is the exact value of $|\sqrt{2}-2|-|3-2 \sqrt{2}|$?
(A) 0.41
(B) $\sqrt{2}-1$
(C) $1-\sqrt{2}$
(D) $5-3 \sqrt{2}$
(E) $3 \sqrt{2}-5$
3. Consider the function f defined by:

$$
f(x)= \begin{cases}2 x^{2}-3 & \text { if } x<0 \\ 5 x-3 & \text { if } x \geq 0\end{cases}
$$

Find the slope of the line which goes through the points $(-2, f(-2))$ and (3, f(3).
(A) $7 / 5$
(B) 2
(C) $17 / 5$
(D) 5
(E) 7
4. Let $f(x)=x^{2}+1$. Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$.
(A) $h-2$
(B) $2 x-2 h+h^{2}$
(C) $2 x+h$
(D) $2 x+h+2$
(E) $x^{2}+2 h+2$
5. Consider the function f defined by:

$$
f(x)= \begin{cases}-2 x+4 & \text { if } x<1 \\ 4 & \text { if } x=1 \\ x^{2}+1 & \text { if } x>1\end{cases}
$$

The limit as x approaches 1 is
(A) 1
(B) 2
(C) 3
(D) 4
(E) The limit does not exist.
6. The expression $\frac{1}{1+\sqrt{x}}$ is equivalent to
(A) $\frac{1+\sqrt{x}}{1-x}$
(B) $\frac{1+\sqrt{x}}{1+x}$
(C) $\frac{1-\sqrt{x}}{1-x}$
(D) $\frac{1-\sqrt{x}}{1+x}$
(E) $1+x$
7. The distance between the point $(6.5,8.5)$ and the midpoint of the segment joining the points $(2,3)$ and $(5,6)$ is
(A) $\sqrt{22}$
(B) $\sqrt{23}$
(C) 5
(D) $\sqrt{26}$
(E) 6
8. The following points lie on the same line: $(2 b, 3),(b+3,-2),(b, 7)$. What is the value of b ?
(A) $-2 / 3$
(B) $2 / 3$
(C) 1
(D) $4 / 3$
(E) 2
9. Suppose the functions f and g are given completely by the table of values shown.

x	$f(x)$	x	$g(x)$
0	2		0
1	7		5
2	5		7
3		2	4
4		3	2
5	3		4
5	6		6
6	0		3
6		1	
7	4		7
		0	

What is $f(g(5-1)-3)$?
(A) 1
(B) 3
(C) 4
(D) 5
(E) 6
10. Find the product of the two roots of $10 x^{2}+31 x-14=0$.
(A) -3
(B) $-7 / 5$
(C) $5 / 7$
(D) 2
(E) 6

On all the following questions, show your work.
11. Let f and g be functions defined by $f(x)= \begin{cases}x^{2}-1 & \text { if } x<0 \\ 4-x & \text { if } x \geq 0\end{cases}$ and $g(x)=2 x+3$.
(a) Compute $f \circ g(-2), f \circ g(-1)$, and $f \circ g(0)$

$$
\begin{aligned}
& f \circ g(-2)=f(g(-2))=f(-1)=0, \\
& f \circ g(-1)=f(g(-1))=f(1)=3, \text { and } \\
& f \circ g(0)=f(3)=1 .
\end{aligned}
$$

(b) Find a symbolic representation of $f \circ g(x)$

$$
f \circ g(x)=\left\{\begin{array}{lr}
(2 x+3)^{2}-1 & \text { if } 2 x+3<0 \\
4-(2 x+3) & \text { if } 2 x+3 \geq 0
\end{array}\right.
$$

Next, simplify to get

$$
f \circ g(x)= \begin{cases}4 x^{2}+12 x+8 & \text { if } x<-3 / 2 \\ 1-2 x & \text { if } x \geq-3 / 2\end{cases}
$$

12. Describe in English what it means to say that the limit of a function f is 2 as x approaches 1. Sketch a graph of a function which has this property but also satisfies $f(1)=3$.
It means that when x is close to (but not equal to) $1, f(x)$ is close to 2.

