Math 1120

Find the domain and the intervals of concavity of $g(x) = -\sqrt{4} - x^2$. First note that g is defined only when $4 - x^2 \ge 0$ and this turns out to be $-2 \le x \le 2$. To find g', rewrite g in fractional exponential form, $g(x) = -(4 - x^2)^{1/2}$. Now,

$$g'(x) = -\frac{1}{2}(4-x^2)^{-1/2}(-2x)$$
$$= x(4-x^2)^{-1/2}.$$

Therefore we can find g'' by the product rule.

$$g''(x) = 1(4-x^2)^{-1/2} + \left(-\frac{1}{2}(4-x^2)^{-3/2}\right)(-2x) \cdot x$$

$$= (4-x^2)^{-1/2} + x^2(4-x^2)^{-3/2}$$

$$= (4-x^2)^{-1/2} \left(1+x^2(4-x^2)^{-1}\right)$$

$$= \frac{1}{(4-x^2)^{1/2}} \left(\frac{4-x^2}{4-x^2} + \frac{x^2}{(4-x^2)}\right)$$

$$= \frac{1}{(4-x^2)^{1/2}} \left(\frac{4}{(4-x^2)}\right)$$

$$= \frac{4}{(4-x^2)^{3/2}}$$

There are two (equivalent) ways to interpret $r^{3/2}$. One is $\sqrt{r^3}$ and the other is $(\sqrt{r})^3$ and both these result in a positive answer when r is itself positive. Of course, since the $4 - x^2$ term is in the denominator, we must eliminate both 2 and -2. For all the numbers $x \in (-2, 2)$, g''(x) > 0. IE, g is concave upwards on (-2, 2). Note that the graph of g is just the bottom half of the circle $x^2 + y^2 = 4$.