Find the domain and the intervals of concavity of $g(x)=-\sqrt{4-x^{2}}$. First note that g is defined only when $4-x^{2} \geq 0$ and this turns out to be $-2 \leq x \leq 2$. To find g^{\prime}, rewrite g in fractional exponential form, $g(x)=-\left(4-x^{2}\right)^{1 / 2}$. Now,

$$
\begin{aligned}
g^{\prime}(x) & =-\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2}(-2 x) \\
& =x\left(4-x^{2}\right)^{-1 / 2}
\end{aligned}
$$

Therefore we can find $g^{\prime \prime}$ by the product rule.

$$
\begin{aligned}
g^{\prime \prime}(x) & =1\left(4-x^{2}\right)^{-1 / 2}+\left(-\frac{1}{2}\left(4-x^{2}\right)^{-3 / 2}\right)(-2 x) \cdot x \\
& =\left(4-x^{2}\right)^{-1 / 2}+x^{2}\left(4-x^{2}\right)^{-3 / 2} \\
& =\left(4-x^{2}\right)^{-1 / 2}\left(1+x^{2}\left(4-x^{2}\right)^{-1}\right) \\
& =\frac{1}{\left(4-x^{2}\right)^{1 / 2}}\left(\frac{4-x^{2}}{4-x^{2}}+\frac{x^{2}}{\left(4-x^{2}\right)}\right) \\
& =\frac{1}{\left(4-x^{2}\right)^{1 / 2}}\left(\frac{4}{\left(4-x^{2}\right)}\right) \\
& =\frac{4}{\left(4-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

There are two (equivalent) ways to interpret $r^{3 / 2}$. One is $\sqrt{r^{3}}$ and the other is $(\sqrt{r})^{3}$ and both these result in a positive answer when r is itself positive. Of course, since the $4-x^{2}$ term is in the denominator, we must eliminate both 2 and -2 . For all the numbers $x \in(-2,2), g^{\prime \prime}(x)>0$. IE, g is concave upwards on $(-2,2)$. Note that the graph of g is just the bottom half of the circle $x^{2}+y^{2}=4$.

