May 8, $2013 \quad$ Name
The total number of points available is 297. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (30 points) Limit Problems. Compute each of the following limits:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x^{2}-4 x+3}$

Solution: We can rewrite the problem after factoring as $\lim _{x \rightarrow 1} \frac{(x+4)(x-1)}{x-3)(x-1)}$,
which goes to $-5 / 2$ as x goes to 1 .
(b) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}-3}-1}{x-2}$

Solution: We can eliminate the radical by rationalizing. $\frac{\sqrt{x^{2}-3}-1}{x-2}=\frac{\sqrt{x^{2}-3}-1}{x-2}$.
$\frac{\sqrt{x^{2}-3}+1}{\sqrt{x^{2}-3}+1}=\frac{x^{2}-3-1}{(x-2) \cdot\left(\sqrt{x^{2}-3}+1\right)}=\frac{x+2}{\sqrt{x^{2}-3}+1}$ which goes to 2 as x goes to 2 .
(c) $\lim _{x \rightarrow 3} \frac{\frac{1}{x-2}-1}{x-3}$

Solution: Do the fractional arithmetic to get $\lim _{x \rightarrow 3} \frac{3-x}{x-3} \cdot \frac{1}{x-2}=-1$
2. (20 points) Derivative Problem.

Let $f(x)=\sqrt{2 x+1}$. Then $f^{\prime}(x)=1 / \sqrt{2 x+1}$. Recall that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. Use this limit definition of derivative to verify that $f^{\prime}(x)=1 / \sqrt{2 x+1}$.

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)+1}-\sqrt{2 x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)+1}-\sqrt{2 x+1}}{h} \cdot \frac{\sqrt{2(x+h)+1}+\sqrt{2 x+1}}{\sqrt{2(x+h)+1}+\sqrt{2 x+1}} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)+1-(2 x+1)}{h \cdot(\sqrt{2(x+h)+1}+\sqrt{2 x+1})} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h \cdot(\sqrt{2(x+h)+1}+\sqrt{2 x+1})} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{2(x+h)+1}+\sqrt{2 x+1}} \\
& =1 / \sqrt{2 x+1}
\end{aligned}
$$

3. (15 points) Consider the function $f(x)=\left(x+x^{2}-e^{2 x}\right)^{2}$.
(a) Compute $f^{\prime}(x)$

Solution: Since $f^{\prime}(x)=2\left(x+x^{2}-e^{2 x}\right)^{1} \cdot\left(1+2 x-2 e^{2 x}\right)$.
(b) Find an equation of the line tangent to the graph of f at the point ($0, f(0)$).
Solution: $f(0)=(-1)^{2}=1$, and $f^{\prime}(0)=2(1)(1-2)=-2$ so the line is $y-1=-2(x-0)$, or $y=-2 x+1$.
4. (15 points) Find an interval over which the function

$$
G(x)=\ln \left(x^{3}+x^{2}+1\right), \quad-1 \leq x
$$

is decreasing.
Solution: First, the derivative of G is $G^{\prime}(x)=\frac{3 x^{2}+2 x}{x^{3}+x^{2}+1}$. We just need to find out when $G^{\prime}(x)$ is negative. The denominator is positive for all $x \geq-1$, and the numerator is negative between $-2 / 3$ and 0 . So G is decreasing on the interval $(-2 / 3,0)$.
5. (15 points) The function $h(x)=(3 x-2)^{2} \cdot x^{5}$ has three critical points, $x=2 / 3$, $x=0$ and a third point.
(a) Find the third critical point.

Solution: $h^{\prime}(x)=3 \cdot 2 \cdot(3 x-2) x^{5}+5 x^{4}(3 x-2)^{2}=(3 x-2) x^{4}[6 x+5(3 x-2)]$, which has a zero at $x=10 / 21$.
(b) At which of the critical points does h have a local maximum, a local minimum, or neither? In other words describe the nature of each critical point.
Solution: Looking at the sign chart for h^{\prime}, we see that h has a local minimum at $2 / 3$, a local maximum at $10 / 21$ and neither at 0 .
6. (30 points) There is a rational function $r(x)$ with exactly three zeros at $x=-2, x=2$, and $x=4$ and two vertical asymptotes, $x=0$ and $x=5$. Also, $r(x)$ has a horizontal asymptote $y=2$. Find a symbolic representation of $r(x)$ and build the sign chart for it. The symbolic representation is not unique. Does your r have a relative max or min near 3? If so, which one. Sketch the graph of $r(x)$ on the grid provided.

Solution: One such r is given by $r(x)=\frac{2\left(x^{2}-4\right)(x-4)}{x^{2}(x-5)}$. You must be sure that the numerator and denominator have the same degree. That minimum degree is 3 . Now this function is positive on each of the intervals $(-\infty,-2),(2,4)$, and $(5, \infty)$. So my r has a relative maximum near $x=3$.
7. (40 points) Let $f(x)=\frac{x}{2}+1$ The region bounded by f over the interval $[0,4]$. is a trapezoid T. Specifically, $T=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq f(x)$.
(a) Use geometry to find the area of T.

Solution: The region T can be broken into a rectangle of area 4 and a right triangle of area 4 , so the area of T is 8 .
(b) Build the Riemann sum for f over $[0,4]$ using $n=4$ subintervals of equal length and using the right endpoints as the sample points to determine the height of each rectangle. Is the approximation an over-estimate or an under-estimate?
Solution: The sum is $f(1)(1-0)+f(2)(2-1)+f(3)(3-2)+f(4)(4-3)=$ $3 / 2+2+5 / 2+3=9$.
(c) Use calculus to find the area of the region T. Your calculation must show what antiderivative you used and how you measured its growth.
Solution: $\int_{0}^{4} \frac{x}{2}+1 d x=\frac{x^{2}}{4}+\left.x\right|_{0} ^{4}=\frac{16}{4}+4-0=8$.
8. (42 points) Find the following antiderivatives.
(a) $\int 3 x-5 d x$

Solution: $x^{2}-5 x+C$.
(b) $\int 9 x^{3}-4 x-2 x^{-1} d x$

Solution: $\int 9 x^{3}-4 x-2 x^{-1} d x=9 \cdot \frac{1}{4} x^{4}-2 \cdot x^{2}-2 \ln x+C$.
(c) $\int \frac{3 x^{3}+2 x^{2}-1}{x^{2}} d x$

Solution: $\int\left(3 x^{3}+2 x^{2}-1\right) / x^{2} d x=\int 3 x+2-x^{-2} d x=3 x^{2} / 2+2 x+$ $x^{-1}+C$.
(d) $\int \frac{2 x}{x^{2}+3} d x$

Solution: By substitution, $\left(u=x^{2}+3\right), \int \frac{2 x}{x^{2}+3} d x=\ln \left|x^{2}+3\right|+C$.
(e) $\int 4 x^{3} \sqrt{x^{4}+3} d x$

Solution: By substitution with $u=x^{4}+3, \int 4 x^{3} \sqrt{x^{4}+3} d x=\frac{2}{3}\left(x^{4}+\right.$ $3)^{3 / 2}+C$.
(f) $\int 3 x^{2} e^{x^{3}} d x$

Solution: By substitution with $u=x^{3}, d u=3 x^{2}, \int e^{u} d u=e^{u}+C=$ $(1 / 3) e^{x^{3}}+C$.
9. (15 points) The percentage of alcohol in a person's bloodstream t hours after drinking 4 fluid ounces of whiskey is given by

$$
A(t)=0.24 t e^{-0.3 t}, \quad 0 \leq t \leq 6
$$

(a) How fast is the percentage of alcohol in the person's bloodstream changing after 1 hour?
Solution: First, find the derivative of A using the product rule. $A^{\prime}(t)=$ $0.24 e^{-0.3 t}-0.3 \cdot 0.24 t e-0.3 t$, so we find that $A^{\prime}(1)=e^{-0.3}(0.24-0.072) \approx$ 0.1244 , which mean that the percentage is growing at about 12% per hour.
(b) At what time is the percentage maximized?

Solution: Find the critical points of A by setting $A^{\prime}(t)$ equal to zero. $e^{-.3 t}(.3(.24) t-.24)=0$ has just one solution, $t \approx 10 / 3$ hours.
(c) What is that maximum percentage?

Solution: Evaluating A at $10 / 3$ gives $A(10 / 3) \approx .2943$.
10. (15 points) Let $G(x)=\sqrt{x^{2}(2 x-5)(3 x+7)}$. Note that $G(3)=\sqrt{9 \cdot 1 \cdot 16}=$ 12, so G is defined at 3 . Find the domain of $G(x)$. Express your answer in interval notation.
Solution: We can instead solve the inequality $f(x)=x^{2}(2 x-5)(3 x+7) \geq 0$. Using the Test Interval technique we see that $f(x)$ is nonnegative precisely on $(-\infty,-7 / 3] \cup[5 / 2, \infty)$.
11. (15 points) There is one point on the graph of the function $f(x)=\ln \left(x^{2}+x\right)$ where the line tangent to the graph has a slope of 3 . Find the x-coordinate of that point.
Solution: Since $f^{\prime}(x)=\frac{2 x+1}{x^{2}+x}$, we can solve $\frac{2 x+1}{x^{2}+x}=3$ using the quadratic formula. We get two numbers, $x=\frac{-1 \pm \sqrt{13}}{6}$, but one of these is not in the domain of f, so the point $x=\frac{-1+\sqrt{13}}{6} \approx 0.43$ is the only one that works.
12. (15 points) Compute the number $\int_{0}^{4}(x-2)^{4} \cdot(x+2) d x$.

Solution: Let $u=x-2$, Then $d u=d x$ and $x+2=u+4$. The integral turns into $\int u^{4}(u+4) d u=u^{6} / 6+4 u^{5} / 5$. Replacing u with $x-2$, we get $(x-2)^{6} / 6+4(x-2)^{5} /\left.5\right|_{0} ^{4}=4 \cdot 2^{6} / 5=256 / 5=51.2$.
13. (30 points) A function f satisfies $f(3)=2$. The line tangent to the graph of f at $(3,2)$ is given by $y=2 x-4$.
(a) What is $f^{\prime}(3)$?

Solution: $f^{\prime}(3)$ is the slope of the tangent line, 2.
(b) Suppose that $f^{\prime \prime}(x)=x-4$. What is $f^{\prime}(2)$?

Solution: First note that $f^{\prime}(x)=x^{2} / 2-4 x+C$ for some constant C. Solve $f^{\prime}(3)=2$ for this to get $C=19 / 2$. So $f^{\prime}(2)=2^{2} / 2-4 \cdot 2+19 / 2=$ 7/2.
(c) Find a representation for f.

Solution: $f(x)=x^{3} / 6-2 x^{2}+19 x / 2+C$ for some constant C. We can solve for C since we know that $f(3)=2$. We get $C=-13$, so $f(x)=x^{3} / 6-2 x^{2}+19 x / 2-13$.

