December 11, 2012
Name
The total number of points available is 293. Throughout this test, show your work. Using a calculator to circumvent ideas discussed in class will generally result in no credit.

1. (20 points) Derivative Problem.

Let $f(x)=2 x^{2}-x$. Then $f^{\prime}(x)=4 x-1$.
(a) Use the limit definition of derivative to verify that $f^{\prime}(x)=4 x-1$.

Solution:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-(x+h)-\left(2 x^{2}-x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2\left(x^{2}+2 x h+h^{2}\right)-x-h-2 x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-x-h-2 x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4 x+2 h-1)}{h} \\
& =\lim _{h \rightarrow 0} 4 x+2 h-1 \\
& =4 x-1
\end{aligned}
$$

(b) Use the information above to find an interval over which $f(x)$ is increasing.
Solution: Since $f^{\prime}(x)>0$ precisely when $x>1 / 4, f(x)$ is increasing on $[1 / 4, \infty)$.
2. (30 points) Limit Problem
(a) Find $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+3 x-5}{x^{2}-1}$.

Solution: To resolve the zero over zero conflict, divide $x^{3}+x^{2}+3 x-5$ by $x-1$ to get $x^{2}+2 x+5$, then take the limit of the quotient obtained by eliminating the common factor $x-1 . \lim _{x \rightarrow 1} \frac{x^{2}+2 x+5}{x+1}=8 / 2=4$.
(b) Suppose $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$.
i. Is it possible that $\lim _{x \rightarrow a} f(x) \cdot g(x)=3$?

Solution: The limit of the product is the product of the limits, so $\lim _{x \rightarrow a} f(x) \cdot g(x)=0$.
ii. Is it possible that $\lim _{x \rightarrow a} f(x) / g(x)=3$?

Solution: Yes, suppose $f(x)=3 x$ and $g(x)=x$. Then $\lim _{x \rightarrow a} f(x) / g(x)=$ 3.
iii. What are the possible outcomes of $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$? Can this limit fail to exist? Must the limit fail to exist? Write a sentence or two to show that you understand this question.
Solution: This limit can fail to exist. It can also be any real number.
3. (15 points) Consider the function $f(x)=e^{x^{3}-3 x^{2}-9 x}$.
(a) Find a value of x at which the line tangent to the graph of f is horizontal.

Solution: Since $f^{\prime}(x)=e^{x^{3}-3 x^{2}-9 x}\left(3 x^{2}-6 x-9\right)$, we can factor and solve $3 x^{2}-6 x-9=3(x+1)(x-3)=0$ to get $x=-1$ and $x=3$.
(b) Find an interval over which $f(x)$ is increasing.

Solution: Build the sign chart to see that f^{\prime} is positive outside the interval $[-1,3]$
(c) Find an equation of the tangent line referred to in part a.

Solution: $f(-1)=e^{-1-3+9}=e^{5}$, so the line is $y-e^{5}=0(x+1)$, or $y=e^{5}$.
4. (30 points) There is a cubic polynomial $p(x)$ with zeros at $x=-2, x=1$, and $x=2$.
(a) Build one such function.

Solution: $f(x)=(x+2)(x-1)(x-2)$ is such a function.
(b) Build the sign chart for your function.

Solution: The function above is positive on $(-2,1) \cup(2, \infty)$.
(c) Find an interval over which your function is increasing?

Solution: Build the sign chart for $f^{\prime}(x)=3 x^{2}-2 x-4$. I'm getting $\frac{2 \pm 2 \sqrt{13}}{6}$.
(d) Find the area of the region bounded by your function over the interval from $x=-2$ to $x=1$.
Solution: First $f(x)=\left(x^{2}-4\right)(x-1)=x^{3}-x^{2}-4 x+4$, which is positive over $(-2,1)$, so the area caught underneath the graph of f is $\int_{-2}^{1} x^{3}-x^{2}-4 x+4 d x=x^{4} / 4-x^{3} / 3-2 x^{2}+\left.4 x\right|_{-2} ^{1}=1 / 4-1 / 3-2+$ $4-(4+8 / 3-8-8)=45 / 4$.
5. (12 points) Given $f^{\prime \prime}(x)=2 x-6$ and $f^{\prime}(-2)=6$ and $f(-2)=1$. Find $f^{\prime}(x)$ and $f(x)$.
Solution: First write $f^{\prime}(x)=x^{2}-6 x+C$ by the power rule. Solve $f^{\prime}(-2)=6$ for C to get $C=-10$. Then $f(x)=x^{2}-6 x-10$. Therefore $f(x)=\int x^{2}-$ $6 x-10 d x=x^{3} / 3-3 x^{2}-10 x+C$. We can solve $f(-2)=1$ to get $C=19 / 3$, so the function is $f(x)=x^{3} / 3-3 x^{2}-10 x+19 / 3$.
6. (12 points) Let $f(x)=\frac{3}{x}-2 e^{x}$.
(a) Find an antiderivative of $f(x)$.

Solution: Note that $\int \frac{3}{x}-2 e^{x} d x=3 \ln x-2 e^{x}$.
(b) Compute $\int_{1}^{e} f(x) d x$.

Solution: Note that $\int \frac{3}{x}-2 e^{x} d x=3 \ln x-2 e^{x}$. So $\int_{1}^{e} f(x) d x=$ $3 \ln x-\left.2 e^{x}\right|_{1} ^{e}=3 \ln e-2 e^{e}-(3 \ln 1-2 e)=3-2 e^{e}+2 e \approx-18.872$.
7. (42 points) Find the following antiderivatives.
(a) $\int 2 x-5 d x$

Solution: $x^{2}-5 x+C$.
(b) $\int 9 x^{2}-4 x-2 / x d x$

Solution: $3 \cdot x^{3}-2 \cdot x^{2}-2 \ln x+C$.
(c) $\int \frac{3 x^{3}+2 x^{2}-x}{x} d x$

Solution: $\int\left(3 x^{3}+2 x^{2}-x\right) / x d x=\int 3 x^{2}+2 x-1 d x=x^{3}+x^{2}-x+C$.
(d) $\int \frac{2 x+3}{x^{2}+3 x-3} d x$

Solution: By substitution, $\left(u=x^{2}+3 x-3\right), \left.\int \frac{2 x+3}{x^{2}+3 x-3} d x=\ln \right\rvert\, x^{2}+$ $3 x-3 \mid+C$.
(e) $\int 6 x^{5}\left(x^{6}+3\right)^{7} d x$

Solution: By substitution with $u=x^{6}+3, \int 6 x^{4}\left(x^{6}+3\right)^{7} d x=\frac{\left(x^{6}+3\right)^{8}}{8}+$ C.
(f) $\int x^{2} e^{x^{3}} d x$

Solution: By substitution with $u=x^{3}, d u=3 x^{2}, \int e^{u} d u=e^{u}+C=$ $(1 / 3) e^{x^{3}}+C$.
8. (15 points) Find the intervals over which $f(x)=x^{2} e^{2 x}$ is increasing.

Solution: First $f^{\prime}(x)=2 x e^{2 x}+x^{2} \cdot 2 e^{2 x}=2 e^{2 x}\left(x+x^{2}\right)$, so we need to solve $x+x^{2}=0$ and we get $x=0$ and $x=-1$. Since f^{\prime} is negative precisely on $(-1,0), f$ is increasing on $(-\infty,-1)$ and on $(0, \infty)$.
9. (12 points) Is there a value of b for which $\int_{b}^{2 b} x^{4}+x^{2} d x=128 / 15$? If so, find it.

Solution: Use the power rule to get the equation $(2 b)^{5} / 5+(2 b)^{3} / 3-\left(b^{5} / 5+\right.$ $b / 3)=128 / 15$. It follows that $b=1$.
10. (30 points) Recall the $\ln (x)$ is defined for positive numbers only.
(a) For which values of x is $g(x)=\ln \left(\frac{\left(x^{2}+1\right)(2 x-1)}{\left(x^{2}-4\right)(3 x+7)}\right)$ defined. Express your answer in interval notation. Notice that $g(0)=\ln \left(\frac{1(-1)}{(-4)^{7}}\right)=\ln (1 / 28)=$ $\ln (1)-\ln (28)=-\ln (28)$, so your answer above should include the number 0 .
Solution: Build the sign chart for $f(x)=\frac{\left(x^{2}+1\right)(2 x-1)}{\left(x^{2}-4\right)(3 x+7)}$. Note that there are four branch points, $x=1 / 2, x= \pm 2$ and $x=-7 / 3$. So you see that $f(x)>0$ precisely on $(-\infty,-7 / 3) \cup(-2,1 / 2) \cup(2, \infty)$.
(b) Find $g^{\prime}(0)$.

Solution: First, use the properties of $\ln (x)$ to simplify. $g(x)=\ln \left(\frac{\left(x^{2}+1\right)(2 x-1)}{\left(x^{2}-4\right)(3 x+7)}\right)=$ $\ln \left(x^{2}+1\right)+\ln (2 x-1)-\ln \left|\left(x^{2}-4\right)\right|-\ln (3 x+7)$. Then $g^{\prime}(x)=\frac{2 x}{x^{2}+1}+$ $\frac{2}{2 x-1}-\frac{2 x}{\left|x^{2}-4\right|}-\frac{3}{3 x+7}$, whose value at zero is $g^{\prime}(0)=-2-3 / 7=-17 / 7$.
(c) Use the information above to find an equation for the line tangent to $g(x)$ at the point $(0,-\ln (28))$.
Solution: $y+\ln (28)=-(17 / 7)(x-0)$ which is the same line as $y=$ $-17 x / 7-\ln (28)$.
11. (20 points) Use the substitution technique to find $\int(x-2)^{4} \cdot x d x$. Then differentiate to check your answer.
Solution: Let $u=x-2$, then $d u=d x$ and $\int(x-2)^{4} \cdot x d x=\int u^{4}(u+2) d u$, and this give rise to $\frac{u^{6}}{6}+2 \frac{u^{5}}{5}+C=\frac{(x-2)^{6}}{6}+\frac{2(x-2)^{5}}{5}+C$.
12. (10 points) Find the derivative of the function g defined by $g(x)=\ln \left(e^{x^{2}-4 x}\right)$. Solution: Since $g(x)=\ln \left(e^{x^{2}-4 x}\right)=x^{2}-4 x$, it follows that $g^{\prime}(x)=2 x-4$.
13. (10 points) Compute $\int \frac{d}{d x} x e^{x^{2}} d x$.

Solution: One function whose derivative is $\frac{d}{d x} x e^{x^{2}}$ is $x e^{x^{2}}$.
14. (15 points) Suppose x and y are positive real numbers satisfying $2 x y=9$.
(a) Find two pairs of numbers $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ satisfying the condition $2 x y=9$. Compute the value of $2 x+3 y$ for each of these pairs.
Solution: Two possible points are ($1,9 / 2$) and ($2,9 / 4$), where the values are 15.5 and 10.75 respectively.
(b) What is the smallest possible value of $2 x+3 y$ such that $2 x y=9$.

Solution: Minimize the function $f(x)=2 x+27 / 2 x$ to get $x=3 \sqrt{3} / 2$.
(c) What is the smallest possible value of $3 x+4 y$ such that $2 x y=9$.

Solution: This is similar to the one above.
15. (20 points) Use calculus to find the area of the trapezoid R bounded above by the graph of $f(x)=2 x+1$, below by the x-axis, and on the sides by $x=1$ and $x=5$.
Solution: $\int_{1}^{5} 2 x+1 d x=x^{2}+\left.x\right|_{1} ^{5}=5^{2}+5-\left(1^{2}+1\right)=30-2=28$.

