May 11, 2011
Name
The total number of points available is 305 . Throughout the free response part of this test, show your work. Each of the first 20 problems is worth 10 points.

1. Let $f(x)=x^{4}-2 x+4$. What is $f^{\prime}(1)$?

Solution: Since $f^{\prime}(x)=4 x^{3}-2$, so $f^{\prime}(1)=4-2=2$.
2. Find an equation for the line tangent to the graph of $f(x)=3 x^{3}-2 x+4$ at the point $(2, f(2))$?
Solution: Since $f^{\prime}(x)=9 x^{2}-2, f^{\prime}(2)=34$, so the tangent line is $y-24=$ $36(x-2)$.
3. Consider the function $f(x)=\left(e^{2 x}+1\right)^{3}$. What is the slope of line tangent to the graph of f at the point $(1, f(1))$?
Solution: Since $f^{\prime}(x)=3\left(e^{2 x}+1\right)^{2} \cdot\left(2 e^{2 x}\right)$ by the chain rule, $f^{\prime}(1)=3\left(e^{2}+\right.$ $1)^{2} \cdot 2 e^{2} \approx 3120.1$.
4. Suppose the line $3 x+4 y=11$ is tangent to the graph of $h(x)$ at the point $(1,2)$. What is $h^{\prime}(1)$?
Solution: The slope of the line is $m=-3 / 4$.
5. What is $\lim _{x \rightarrow \infty} \frac{(3 x+2)(4 x-1)}{(x-2)(2 x-3)}$?

Solution: Using the asymptote theorem, $\lim _{x \rightarrow \infty} \frac{(3 x+2)(4 x-1)}{(x-2)(2 x-3)}=$ $12 / 2=6$.
6. What is the exact value of $|2 \pi-7|+|8-2 \pi|+\pi$? Leave your answer in terms of π. No credit for a decimal approximation.
Solution: The value is $7-2 \pi+8-2 \pi+\pi=15-3 \pi$.
7. What is $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$?

Solution: Factor both numerator and denominator to get $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}=$ $\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)\left(x^{2}+2 x+4\right)}=4 / 12=1 / 3$
8. Find a function f that satisfies (a) $f^{\prime}(x)=3 x^{2}-2 x$ and (b) $f(2)=3$.

Solution: Antidifferentiate to get $f(x)=x^{3}-x^{2}+C$. Thus $f(2)=8-4+C=$ 3 , so $C=-1$ and $f(x)=x^{3}-x^{2}-1$.
9. Let $H(x)=\ln \left(4 x^{2}+12 x+10\right)-2 x$. Find all critical points of H.

Solution: We need to solve the equation $\frac{8 x+12}{4 x^{2}+12 x+10}=2$. This is equivalent to $8 x^{2}+16 x+8=0$ which has repeated roots, $x=-1$
10. Let $g(x)=2 x^{3}-7 x^{2}+4 x-10$. Find the intervals over which g is decreasing?

Solution: Note that $g^{\prime}(x)=6 x^{2}-14 x+4$. Build the sign chart for $g^{\prime}(x)$ to find that $g^{\prime}(x) \leq 0$ on $[1 / 3,2]$.
11. Let $k(x)=2 x^{4}-14 x^{3}+30 x^{2}+10 x$. Over which intervals is k is concave upwards?
Solution: $k^{\prime \prime}(x)=12(2 x-5)(x-1)>0$ on $(-\infty, 1)$ and $(5 / 2, \infty)$.
12. What is the value of $\int_{2}^{4} \frac{d}{d x}(3 x-5)^{4} d x$

Solution: Since differentiation and antidifferentiation just undo each other, its just $\left.(3 x-5)^{4}\right|_{2} ^{4}=7^{4}-(1)^{4}=2401-1=2400$.
13. What is the area of the region R bounded above by $y=2 x+1$, below by $y=x-7$, on the left by $x=2$ and on the right by $x=4$?
Solution: Let $f(x)=2 x+1-(x-7)=x+4$. Now $\int_{2}^{4} x+8=x^{2} / 2+\left.8 x\right|_{2} ^{4}=$ $8+32-(2+16)=22$.
14. Find a value of b for which $\int_{b}^{2 b} \frac{1}{x}+1 d x=\ln (2)+6$.

Solution: Solve $\ln (2 b)+2 b-\ln (b)-b=\ln (2)+b=\ln (2)+6$ for b to get $b=6$.
15. What is the absolute maximum value of the function $f(x)=2 x^{3}-9 x^{2}+12 x+5$ on the interval $-2 \leq x \leq 3$?
Solution: Find $f^{\prime}(x)$ first and then the critical points that are between -2 and 3. $f^{\prime}(x)=6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)=6(x-1)(x-2)$, so there are two critical points and two endpoints to check. $f(-2)=-71 ; f(1)=10 ; f(2)=9$; and $f(3)=14$, so the absolute maximum is $f(3)=14$, which of course occurs at $x=3$.
16. Find all the zeros of the polynomial $p(x)=(x-1)^{3}(x+2)^{2}-4(x-1)^{2}(x+2)$.

Solution: Factor p to get $p(x)=(x-1)^{2}(x+2)[(x-1)(x+2)-4]$. Two zeros are $x=1$ and $x=-2$ and the other two are the solutions to $(x-1)(x+2)-4=0$, which yields $x^{2}+x-6=(x+3)(x-2)=0$ and $x=-3$ and $x=2$.
17. Use calculus to find $\int e^{2 x}\left(e^{2 x}+1\right)^{4} d x$.

Solution: By substitution with $u=e^{2 x}+1$, we have $d u=2 x^{2 x}$ and then get the antiderivative $\frac{1}{2} \frac{u^{5}}{5}=\frac{1}{10}\left(e^{2 x}+1\right)^{5}+C$.
18. Use calculus to find $\int \frac{2 x}{x^{2}+1} d x$.

Solution: Careful examination of the integrand reveals that it has the form $\frac{f^{\prime}(x)}{f(x)}$, so $\int \frac{2 x}{x^{2}+1} d x=\ln \left(x^{2}+1\right)+C$.
19. Use calculus to compute $\int_{1}^{3} x^{2}-x-\frac{1}{x}+1 d x$.

Solution: Doing one piece at a time yields $\int_{1}^{3} x^{2}-x-\frac{1}{x}+1 d x=x^{3} / 3-$ $x^{2} / 2-\ln (x)+\left.x\right|_{1} ^{3}=2 / 3-\ln (3)$.
20. Given that the graph of f passes through the point $(1,5)$ and that the slope of its tangent line at $(x, f(x))$ is $2 x+1$, what is $f(4)$?
Solution: $f(x)=x^{2}+x+c$ so $f(1)=1+1+c=5$. It follows that $c=3$. Thus, $f(4)=4^{2}+4+3=23$.
21. (15 points) Rachel learns typing in a 14 week class. The number of words per minute Rachel can type after t weeks is given by

$$
F(t)=120-40 e^{-0.4 t}
$$

(a) How many more words per minute can Rachel type after the third week than she can type after the second week? (b) What is $F^{\prime}(2.5)$? (c) How are these numbers related?
Solution: $F(3)-F(2)=120-40 e^{-1.2}-120-40 e^{-0.8}=40\left(e^{-0.8}-e^{-1.2} \approx\right.$ 5.9 words per minute. On the other hand, $F^{\prime}(t)=16 e^{-0.4 t}$, so $F^{\prime}(2.5)=$ $16 e^{-1} \approx 5.88$ words per minute. This is not surprising because to us because F^{\prime} measures the rate of learning.
22. (20 points) Find the area of the region caught between the functions $f(x)=$ $5-x^{2}$ and $g(x)=2 x-3$. Show how you used the Fundamental Theorem by measuring the growth of an antiderivative over an interval. Your work must make clear what interval you used.
Solution: The area is $\left.\int_{-4}^{2} 5-x^{2}-(2 x+3) d x=\int_{-4}^{2}-x^{2}-2 x+8\right) d x=$ $-x^{3} / 3-x^{2}+\left.8 x\right|_{-4} ^{2}=60-72 / 3=36$.
23. (30 points) Let $h(x)=\frac{x(2 x+11)(2 x+7)}{(x-1)^{2}(3 x-12)}$.
(a) Find the asymptotes of h.

Solution: Solve $x-1=0$ to get $x=1$ and solve $3 x-12=0$ to get $x=4$ for asymptotes.
(b) Find the zeros of h.

Solution: Solve $2 x+7=0$ to get the zero $x=-7 / 2$ and solve $2 x+11=0$ to get the zero $x=-11 / 2$. Of course $x=0$ is also a zero of h.
(c) Build the sign chart for $h(x)$.

Solution: The sign chart shows that h is positive over $(-\infty,-11 / 2),(-7 / 2,0)$ and $(4, \infty)$, and negative on the open intervals $(-11 / 2,-7 / 2),(0,1)$ and $(1,4)$.
(d) Sketch the graph of $h(x)$ USING the information in (a) and (b).

Solution: The graph must show that there are relative extrema at two values, a minimum between -2 and -3 and a maximum between 1 and 2.5. Also, your graph must make clear that there is not sign change at $x=1$.

24. (20 points) Let $H(x)=\sqrt{(3 x+1)^{12}+3}$.
(a) Find three functions f, g and h satisfying $f(g(h(x)))=f \circ g \circ h(x)=H(x)$.

Solution: One way to do this is to let $f(x)=\sqrt{x}, g(x)=x^{12}+3$, and $h(x)=3 x+1$.
(b) Compute the derivative of each of the three component functions f, g, h.

Solution: In case we choose the functions above, we get $f^{\prime}(x)=x^{-1 / 2} / 2$, $g^{\prime}(x)=12 x^{11}$, and $h^{\prime}(x)=3$.
(c) Apply the chain rule twice to find $H^{\prime}(x)$.

Solution: $H^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)=\frac{1}{2}\left((3 x+1)^{12}+3\right)^{-1 / 2}$. $12(3 x+1)^{11} \cdot 3=18\left((3 x+1)^{12}+3\right)^{-1 / 2} \cdot(3 x+1)^{11}$.
25. (20 points) The quadrilateral T with vertices $A=(0,0), B=(0,6), C=$ $(8,10)$ and $D=(8,0)$ is a trapezoid since the two sides $A B$ and $C D$ are both vertical. It is not hard to see that the area of T is 64 square units.
(a) Find an equation for the line passing through the points B and C. Let $f(x)$ be the function whose graph is this line.
Solution: The slope of the line is $m=\frac{10-6}{8-0}=\frac{1}{2}$, so the line is $y-6=$ $\frac{1}{2}(x-0)$, which is $y=x / 2+6$
(b) Use calculus, showing all your work, to verify that the area of the region T bounded above by the graph of f, below by the x-axis, and on the sides by $x=0$ and $x=8$ is 64 .
Solution: Since the function is positive, the area is the same as the integral, $\int_{0}^{8} x / 2+6 d x=x^{2} / 4+\left.6 x\right|_{0} ^{8}=64 / 4+6 \cdot 8-0=16+48=64$.

