May 11, $2011 \quad$ Name
The total number of points available is 305 . Throughout the free response part of this test, show your work. Each of the first 20 problems is worth 10 points.

1. Let $f(x)=x^{4}-2 x+4$. What is $f^{\prime}(1)$?
2. Find an equation for the line tangent to the graph of $f(x)=3 x^{3}-2 x+4$ at the point $(2, f(2))$?
3. Consider the function $f(x)=\left(e^{2 x}+1\right)^{3}$. What is the slope of line tangent to the graph of f at the point $(1, f(1))$?
4. Suppose the line $3 x+4 y=11$ is tangent to the graph of $h(x)$ at the point $(1,2)$. What is $h^{\prime}(1)$?
5. What is $\lim _{x \rightarrow \infty} \frac{(3 x+2)(4 x-1)}{(x-2)(2 x-3)}$?
6. What is the exact value of $|2 \pi-7|+|8-2 \pi|+\pi$? Leave your answer in terms of π. No credit for a decimal approximation.
7. What is $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$?
8. Find a function f that satisfies (a) $f^{\prime}(x)=3 x^{2}-2 x$ and (b) $f(2)=3$.
9. Let $H(x)=\ln \left(4 x^{2}+12 x+10\right)-2 x$. Find all critical points of H.
10. Let $g(x)=2 x^{3}-7 x^{2}+4 x-10$. Find the intervals over which g is decreasing?
11. Let $k(x)=2 x^{4}-14 x^{3}+30 x^{2}+10 x$. Over which intervals is k is concave upwards?
12. What is the value of $\int_{2}^{4} \frac{d}{d x}(3 x-5)^{4} d x$
13. What is the area of the region R bounded above by $y=2 x+1$, below by $y=x-7$, on the left by $x=2$ and on the right by $x=4$?
14. Find a value of b for which $\int_{b}^{2 b} \frac{1}{x}+1 d x=\ln (2)+6$.
15. What is the absolute maximum value of the function $f(x)=2 x^{3}-9 x^{2}+12 x+5$ on the interval $-2 \leq x \leq 3$?
16. Find all the zeros of the polynomial $p(x)=(x-1)^{3}(x+2)^{2}-4(x-1)^{2}(x+2)$.
17. Use calculus to find $\int e^{2 x}\left(e^{2 x}+1\right)^{4} d x$.
18. Use calculus to find $\int \frac{2 x}{x^{2}+1} d x$.
19. Use calculus to compute $\int_{1}^{3} x^{2}-x-\frac{1}{x}+1 d x$.
20. Given that the graph of f passes through the point $(1,5)$ and that the slope of its tangent line at $(x, f(x))$ is $2 x+1$, what is $f(4)$?
21. (15 points) Rachel learns typing in a 14 week class. The number of words per minute Rachel can type after t weeks is given by

$$
F(t)=120-40 e^{-0.4 t}
$$

(a) How many more words per minute can Rachel type after the third week than she can type after the second week? (b) What is $F^{\prime}(2.5)$? (c) How are these numbers related?
22. (20 points) Find the area of the region caught between the functions $f(x)=$ $5-x^{2}$ and $g(x)=2 x-3$. Show how you used the Fundamental Theorem by measuring the growth of an antiderivative over an interval. Your work must make clear what interval you used.
23. (30 points) Let $h(x)=\frac{x(2 x+11)(2 x+7)}{(x-1)^{2}(3 x-12)}$.
(a) Find the asymptotes of h.
(b) Find the zeros of h.
(c) Build the sign chart for $h(x)$.
(d) Sketch the graph of $h(x)$ USING the information in (a) and (b).

24. (20 points) Let $H(x)=\sqrt{(3 x+1)^{12}+3}$.
(a) Find three functions f, g and h satisfying $f(g(h(x)))=f \circ g \circ h(x)=H(x)$.
(b) Compute the derivative of each of the three component functions f, g, h.
(c) Apply the chain rule twice to find $H^{\prime}(x)$.
25. (20 points) The quadrilateral T with vertices $A=(0,0), B=(0,6), C=$ $(8,10)$ and $D=(8,0)$ is a trapezoid since the two sides $A B$ and $C D$ are both vertical. It is not hard to see that the area of T is 64 square units.
(a) Find an equation for the line passing through the points B and C. Let $f(x)$ be the function whose graph is this line.
(b) Use calculus, showing all your work, to verify that the area of the region T bounded above by the graph of f, below by the x-axis, and on the sides by $x=0$ and $x=8$ is 64 .

