May 12, $2010 \quad$ Name
The total number of points available is 260 . Throughout this test, the symbols $D N E$ will mean 'does not exist'. In each problem, circle the option that is closest to the correct answer.

1. Let $f(x)=x^{5}-5 x+4$. What is $f^{\prime}(1)$?
(A) 0
(B) 1
(C) 3
(D) 5
(E) 7

Solution: A. $f^{\prime}(x)=5 x^{4}-5$, so $f^{\prime}(1)=5-5=0$.
2. What is the y-intercept of the line tangent to the graph of $f(x)=2 x^{2}-5 x$ at the point $(1,-3)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: A. $f^{\prime}(1)=-1$, so the line is $y+3=-1(x-1)$ which has y-intercept -2 .
3. How many solutions does the equation $\left|x^{2}-8\right|=1$ have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: E. There are four solutions, $x= \pm \sqrt{7}$ and $x= \pm 3$.
4. What is the slope of a line perpendicular to the line $5 x+2 y=7$?
(A) $2 / 5$
(B) $5 / 2$
(C) $-2 / 5$
(D) $-5 / 2$
(E) None of the above

Solution: A. The slope of the given line is $-5 / 2$ so the slope we seek is $2 / 5$.
5. Which of the following belongs to the domain of
$f(x)=\ln \left(\left(x^{2}+x-2\right)\left(x^{2}+2 x-15\right)\right) ?$
(A) -4
(B) -2
(C) -1
(D) 1
(E) 2

Solution: C. Build the sign chart for the function $g(x)=(x+2)(x-1)(x+$ $5)(x-3)$, and notice that $g(-1)$ is a positive number. None of the other options are in the domain of $f(x)$.
6. Suppose the line $3 x-2 y=7$ is tangent to the graph of $h(x)$ at the point $(1,2)$. What is $h^{\prime}(1)$?
(A) $-3 / 2$
(B) $-2 / 3$
(C) 0
(D) $3 / 2$
(E) 7

Solution: D. The slope of the line is $m=3 / 2$.
7. What is $\lim _{x \rightarrow \infty} \frac{(6 x-2)(2 x-3)}{(3 x+2)(4 x-1)(x-1)}$?
(A) 0
(B) $1 / 3$
(C) $1 / 2$
(D) $1 / 6$
(E) $D N E$

Solution: A. Using the asymptote theorem, since the degree of the denominator is larger, the limit is 0 .
8. What is $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{3}+8}$?
(A) $-1 / 3$
(B) $-1 / 2$
(C) $1 / 2$
(D) $1 / 3$
(E) $D N E$

Solution: A. Factor both numerator and denominator to get $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{3}+8}=$ $\lim _{x \rightarrow-2} \frac{(x-2)(x+2)}{(x+2)\left(x^{2}-2 x+4\right)}=-4 / 12=-1 / 3$
9. Let $F(x)$ be an antiderivative of $x^{2}-2 x$. What is the growth of $F(x)$ over the interval $[0,6]$?
(A) 18
(B) 27
(C) 36
(D) 100
(E) The answer depends on which antiderivative is selected.

Solution: C. One antiderivative is $F(x)=x^{3} / 3-x^{2}$ which grows from 0 to 36 on the given interval.
10. Let $H(x)=\ln (12 x+10)-2 x$. Find a critical point.
(A) $x=-1 / 3$
(B) $x=0$
(C) $x=1 / 3$
(D) $x=1$
(E) $x=4 / 3$

Solution: A. We need to solve the equation $\frac{12}{12 x+10}=2$. This is equivalent to $24 x+8=0$ which has repeated roots, $x=-1 / 3$
11. Let $g^{\prime}(x)=(x-6)(x-2)(x+3)$. Over which one of the following intervals is g is increasing?
(A) $[-4,-2]$
(B) $[-2,0]$
(C) $[0,3]$
(D) $[3,4]$
(E) $[5,7]$

Solution: B. $g^{\prime}(x)>0$ on $(-3,2)$, so $[-2,1]$ is one of the intervals over which g is increasing. But $g^{\prime}(x)<0$ at some points of each of the others.
12. Which of the following is closest to the time required for a 10% investment to triple in value if compounding is continuous?
(A) 7 years
(B) 9 years
(C) 11 years
(D) 12 years
(E) 13 years

Solution: C. The triple time for continuous compounding is 10.98 years.
13. Which of the following is closest to the time required for a 10% investment to triple in value if compounding is quarterly?
(A) 7 years
(B) 9 years
(C) 11 years
(D) 12 years
(E) 13 years

Solution: C. The triple time for quarterly compounding is 11.12 years.
14. The half-life of a radioactive material is 100 years. How long does it take the material to lose two-thirds of its radioactivity?
(A) 132 years
(B) 140 years
(C) 150 years
(D) 158 years
(E) 162 years

Solution: D. It takes 158.5 years to lose down to $1 / 3$ of its radioactivity.
15. What is the value of $\int_{2}^{4} \frac{d}{d x}(3 x-5)^{2}$?
(A) 24
(B) 44
(C) 46
(D) 48
(E) 60

Solution: D. Its just $\left.(3 x-5)^{2}\right|_{2} ^{4}=7^{2}-(1)^{2}=49-1=48$.
16. What is the area of the region R bounded above by $y=2 x-3$, below by $y=x-7$, on the left by $x=2$ and on the right by $x=6$?
(A) 20
(B) 24
(C) 28
(D) 32
(E) 36

Solution: D. Let $f(x)=2 x-3-(x-7)=x+4$. Now $\int_{2}^{4} x+4=x^{2} / 2+\left.4 x\right|_{2} ^{6}=$ $18+24-(2+8)=32$. Alternatively, you could do this by geometry because the region in question is the union of two trapezoids.
17. Find a value of b for which $\int_{b}^{2 b} x^{2} d x=56 / 3$.
(A) 2
(B) 3
(C) 4
(D) 5
(E) 7

Solution: A. Solve $\left.\frac{x^{3}}{3}\right|_{b} ^{2 b}=7 b^{2} / 3=56 / 3$ for b to get $b^{3}=8$ and $b=2$.
18. What is the absolute maximum value of the function $f(x)=x^{3}-9 x^{2}+24 x$ on the interval $1 \leq x \leq 5$?
(A) -10
(B) 0
(C) 9
(D) 16
(E) 20

Solution: E. Find $f^{\prime}(x)$ first and then the critical points that are between 1 and 5. $f^{\prime}(x)=3 x^{2}-18 x+24=3\left(x^{2}-6 x+8\right)=3(x-2)(x-4)$, so there are two critical points and two endpoints to check: $f(2)=20 ; f(4)=16 ; f(1)=16$; and $f(5)=20$, so the absolute maximum is $f(2)=f(5)=20$.
19. Two of the zeros of the polynomial $p(x)=(x-1)^{3}(x+2)^{2}-4(x-1)^{2}(x+2)$ are $x=1$ and $x=-2$. There are two others. What is the sum of the two others?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: B. Factor p to get $p(x)=(x-1)^{2}(x+2)[(x-1)(x+2)-4]$. The sum of the two zeros of $(x-1)(x+2)-4=x^{2}+x-6=(x+3)(x-2)$ is -1 .
20. Rachel learns typing in a 14 week class. The number of words per minute Rachel can type after t weeks is given by

$$
F(t)=160-40 e^{-.4 t} .
$$

During which week does Rachel attain a speed of at least 135 words per minute?
(A) week 1
(B) week 2
(C) week 3
(D) week 4
(E) week 5

Solution: B. Solve $F(t)=135=160-40 e^{-0.4 t}$, so $t=\ln (5 / 8) \div-0.4 \approx 1.17$. Alternatively, Rachel's speed at the end of 1 weeks is just below 135 , so it is during the second week that her speed goes over 135.
21. Consider the function $f(x)=x e^{2 x}$. What is the slope of line tangent to the graph of f at the point $(\ln (2), 4 \ln (2))$?
(A) $4+2 \ln (2)$
(B) $4 \ln (2)$
(C) $4+4 \ln (2))$
(D) $8 \ln (2))$
(E) $4(1+2 \ln (2))$

Solution: E. Since $f^{\prime}(x)=e^{2 x}+2 x e^{2 x}$ by the product rule, $f^{\prime}(\ln (2))=$ $4(1+2 \ln (2))$.
22. If $f(x)=x^{3}\left(x^{2}+2 x\right)$, then $f^{\prime}(x)=$
(A) $3 x^{2}\left(x^{2}+2 x\right)+x^{3}(2 x+2)$
(B) $x^{3}\left(x^{2}+2 x\right)$
(C) $3 x^{2}\left(x^{2}+2 x\right)$
(D) $3 x^{2}(2 x+2)$
(E) $3 x^{2}\left(x^{2}+2 x\right)+x^{3}(3 x)$

Solution: A. By the product rule, $f^{\prime}(x)=3 x^{2}\left(x^{2}+2 x\right)+x^{3}(2 x+2)$.
23. If $g(x)=3 \sqrt{x}+\frac{1}{x^{2}}$, then $g^{\prime}(x)=$
(A) $-3 x^{-2}+\frac{1}{2 x}$
(B) $-3 x^{-2}+2 x$
(C) $\frac{3}{2} x^{-1 / 2}+\frac{1}{2 x}$
(D) $3+\frac{1}{2 x}$
(E) $\frac{3}{2} x^{-1 / 2}-2 x^{-3}$

Solution: E. By the power rule applied twice, $g^{\prime}(x)=\frac{3}{2} x^{-1 / 2}-2 x^{-3}$.
24. If $f(x)=\left(2 x^{2}+1\right)^{4}$, then $f^{\prime}(x)=$
(A) $4\left(2 x^{2}+1\right)^{3}$
(B) $4\left(2 x^{2}+1\right)^{3} \cdot 4 x$
(C) $4(4 x)^{3}$
(D) $(4 x)^{4}$
(E) $4(4 x)^{3} \cdot 4 x$

Solution: B. By the chain rule, $f^{\prime}(x)=4\left(2 x^{2}+1\right)^{3} \cdot 4 x$.
25. If $f(t)=e^{t-1}+\ln (t)$, then $f^{\prime}(1)=$
(A) 0
(B) 1
(C) 2
(D) 3
(E) e^{2}

Solution: C. Since $f^{\prime}(t)=e^{t-1}+1 / t$, it follows that $f^{\prime}(1)=2$.
26. If $f(x)=2 e^{2 x^{2}+1}$, then $f^{\prime}(x)=$
(A) $2 e^{4 x}$
(B) $e^{2 x^{2}+1} \cdot 4 x$
(C) $e^{4 x}$
(D) $2 e^{2 x^{2}+1} \cdot 4 x$
(E) $2 e^{2 x^{2}+1}+2 e^{2 x^{2}+1} \cdot 4 x$

Solution: D. By the chain rule, $f^{\prime}(x)=2 e^{2 x^{2}+1} \cdot 4 x$.
27. $\int\left(2 x^{3}+x+4\right) d x=$
(A) $\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+4 x+C$
(B) $\frac{1}{2} x^{4}+\frac{1}{2} x^{2}+4+C$
(C) $\frac{1}{2}\left(2 x^{3}+x+4\right)^{2}+C$
(D) $\frac{1}{2} x^{4}+\frac{1}{2} x^{2}+C$
(E) $\frac{1}{2} x^{4}+\frac{1}{2} x^{2}+4 x+C$

Solution: E. Antidifferentiating term by term, we get E.
28. $\int_{1}^{4}(2 x+1) d x=$
(A) 0
(B) 6
(C) 15
(D) 18
(E) 20

Solution: D. Measure the growth of $x^{2}+x$ over the interval 1 to 4 to get $4^{2}+4-\left(1^{2}+1\right)=18$.
Consider the graph of the function f :

29. Based on the graph, $\lim _{x \rightarrow 1} f(x)=$
(A) -1
(B) 0
(C) 1
(D) 2
(E) DNE

Solution: A. Using the blotter test, the limit is -1 .
30. Again referring to the graph above, what is $\lim _{x \rightarrow-1} f(x)=$
(A) -1
(B) 0
(C) 1
(D) 2
(E) DNE

Solution: E. Since the left and right limits differ, the limit does not exist.
31. $\lim _{x \rightarrow 0} \frac{x}{x^{2}+2 x}=$
(A) 0
(B) 1
(C) $1 / 2$
(D) $1 / 3$
(E) DNE

Solution: C. Factor the x from the denominator and cancel it with the one in the numerator. Then the zero over zero problem disappears, and we get a limit of $1 / 2$.
32. Let $f(x)=\frac{x}{2 x+1}$. What is the slope of the tangent line to the graph of f at $x=2$?
(A) $-1 / 2$
(B) $-1 / 5$
(C) 0
(D) $1 / 25$
(E) $1 / 5$

Solution: D. Use the quotient rule to find that $f^{\prime}(2)=1 / 25$.
33. Let $f(x)=x^{3}-12 x+1$. Which of the following is correct?
(A) f is increasing on $(-\infty, \infty)$.
(B) f is decreasing on $(-\infty, \infty)$.
(C) f is increasing on $(-2,2)$.
(D) f is decreasing on $(-2,2)$.
(E) f is increasing on $(-\infty, 2)$ and decreasing on $(2, \infty)$.

Solution: D. Build the sign chart for $f^{\prime}(x)$ to see that $f^{\prime}(x)$ is negative over the interval ($-2,2$), so f is decreasing over that interval.
34. Let $f(x)=x^{3}-3 x^{2}+2 x+50$. Then f has a point of inflection at $x=$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Solution: B. Since $f^{\prime}(x)=3 x^{2}-6 x+2$, it follows that $f^{\prime \prime}(x)=6 x-6$, so there is a change in sign at $x=1$.
35. Let $f(x)=\ln (x)+x$. Which of the following is the equation of the tangent line to the graph of f at $x=1$?
(A) $y-1=\left(\frac{1}{x}+1\right)(x-1)$
(B) $y-2=x-1$
(C) $y-1=2(x-2)$
(D) $y-2=2(x-1)$
(E) $y-1=2(x-1)$

Solution: E. Since $f^{\prime}(x)=1+1 / x, f^{\prime}(1)=2$ and the line is given by $y-1=2(x-1)$.
36. Wacky Widgets, Inc. earns a daily profit of $P(x)=-10 x^{2}+1760 x-50,000$ dollars when it produces x tons of widgets. Which of the following gives the marginal profit at a production level of 50 tons.
(A) $-50,000$
(B) 0
(C) 760
(D) 1000
(E) 13,000

Solution: C. The marginal profit is $P^{\prime}(x)=-20 x+1760$, so $P^{\prime}(50)=760$.
37. For a certain function g, it is known that $g^{\prime}(x)=e^{x}+2 x$ and that $g(0)=5$. Which of the following is closest to $g(2)$?
(A) 7.39
(B) 9.39
(C) 11.39
(D) 13.39
(E) 15.39

Solution: E. The function g must have the form $g(x)=e^{x}+x^{2}+C$ and $g(0)=1+C=5$ requires that $C=4$. Thus, $g(2)=e^{2}+4+4 \approx 15.39$.
38. What is $\lim _{x \rightarrow \infty} \frac{1+2 e^{x}}{e^{x}}$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) ∞

Solution: C. For large values of x, the 1 in the numerator is negligible. This the limit is 2 . Alternatively, divide both numerator and denominator by e^{x}, and note that $1 / e^{x}=e^{-x}$ has limit 0 as $x \rightarrow \infty$.
39. How many asymptotes, both horizontal and vertical, does $r(x)=\frac{(x-2)(x-1)\left(x^{2}\right)}{x\left(x^{2}-1\right)}$ have?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Solution: A. After cancelling common factors, we are left with $r(x)=\frac{x(x-2)}{x+1}$, which has one asymptotes, $x=-1$.
40. The derivative $f^{\prime}(x)=3 x-2$, and $f(2)=5$. What is $f(1)$?
(A) $1 / 2$
(B) $3 / 2$
(C) $5 / 2$
(D) $7 / 2$
(E) $9 / 2$

Solution: C. $f(x)=3 x^{2} / 2-2 x+C$ and $f(2)=6-4+C=5$ implies $C=3$, whence $f(1)=3 / 2-2+3=5 / 2$.
41. Let $f(x)= \begin{cases}3 x+1 & \text { if } x<1 \\ 2 & \text { if } x \geq 1 .\end{cases}$

What is $\lim _{x \rightarrow 1} f(x)$?
(A) 1
(B) 2
(C) 3
(D) 4
(E) DNE

Solution: E. The left limit is 4 and the right limit is 2 , so there is no limit.
42. Let $f(x)=2 x^{2}-x+3$. The minimum value of f on $[0,1]$ is
(A) 1.275
(B) 2.350
(C) 2.875
(D) 3.125
(E) 4.075

Solution: C. The parabola opens upward and its vertex satisfies $x=0.25$, so the minimum value of $[0,1]$ is $f(0.25)=2 / 16-1 / 4+3=23 / 8$.
43. Joe (who did not do well in his calculus course) now works long hours at Wacky Widgets. His supervisor has timed his work and has determined that, on a good day, Joe will have assembled a total of $N(t)=-t^{3}+6 t^{2}+15 t$ widgets t hours after starting work. At what rate is Joe assembling widgets 3 hours after starting work (on a good day)?
(A) 0
(B) 24
(C) 27
(D) 66
(E) 72

Solution: B. Since $N^{\prime}(t)=-3 t^{2}+12 t+15$, it follows that $N^{\prime}(3)=-27+$ $36+15=24$ Widgets.
44. You just ordered a new seedling from a seed catalog. If the seedling is 2 inches tall when you receive it and it will be growing at a rate of $2 t+1$ inches per month t months after you receive it, how tall will it be in 5 months?
(A) 2
(B) 11
(C) 25
(D) 30
(E) 32

Solution: E. The seedling will be $2+\int_{0}^{5} 2 t+1 d t=32$.
Consider the function $f(x)=\ln \left[\left(x^{2}-9\right)\left(x^{2}-16\right)\right]$. The next three problems all refer to f.
45. Recall that $\ln (x)$ is defined precisely when $x>0$. At which of the following points is f undefined?
(A) 0.5
(B) 1.5
(C) 2.5
(D) 3.5
(E) 4.5

Solution: D. The sign chart for $g(x)=(x-3)(x+3)(x-4)(x+4)$ shows $g(3.5)<0$, so $f(3.5)$ is undefined there.
46. Which of the following is a critical point of f ?
(A) -9
(B) -5
(C) 1
(D) 2
(E) 7

Solution: B. The derivative of f is

$$
f(x)=\frac{2 x\left(x^{2}-16\right)+2 x\left(x^{2}-9\right)}{\left(x^{2}-9\right)\left(x^{2}-16\right)}=\frac{2 x(x-5)(x+5)}{\left(x^{2}-9\right)\left(x^{2}-16\right)}
$$

which has zeros $x= \pm 5$ and 0 .
47. Which of the following is a critical point of f ?
(A) -6
(B) 0
(C) 6
(D) 8
(E) 9

Solution: B. See the solution above.
48. What is the slope of the line tangent to $f(x)=x e^{2 x}$ at the point $\left(1, e^{2}\right)$?
(A) e^{2}
(B) $2 e^{2}$
(C) $3 e^{2}$
(D) $4 e^{2}$
(E) $5 e^{2}$

Solution: C. By the product rule, $f^{\prime}(x)=e^{2 x}+2 x e^{2 x}$, so $f^{\prime}(1)=3 e^{2}$.
49. Find the growth of $g(x)=\ln \left(e^{2}+x\right)$ over the interval [$\left.2 e^{2}, 5 e^{2}\right]$.
(A) $\ln 2$
(B) $\ln 3$
(C) $\ln 6$
(D) 2
(E) 3

Solution: A. The growth of g is defined by $g\left(5 e^{2}\right)-g\left(2 e^{2}\right)=\ln \left(6 e^{2}\right)-$ $\ln \left(3 e^{2}\right)=\ln 6-\ln 3=\ln 2$.
50. What is the minimum value that $f(x)=x^{3}-6 x^{2}$ attains over the interval $[-1,5]$?
(A) 0
(B) 4
(C) -25
(D) -32
(E) -64

Solution: D. Since f is cubic, we must examine its value at the left endpoint and the larger critical point. Since $f(-1)=-7$ and $f(4)=64-96=-32$, it follows that the minimum value of f over $[-1,5]$ is -32 .
51. What is the slope of the line tangent to $y=\sqrt{e^{x}+3}$ at the point $(0,2)$?
(A) $1 / 8$
(B) $1 / 4$
(C) $1 / 2$
(D) 1
(E) -1

Solution: B. By the chain rule, $y^{\prime}=\frac{1}{2}\left(e^{x}+3\right)^{-\frac{1}{2}} \cdot e^{x}$. Therefore, the slope we're looking for is $\frac{1}{2}\left(e^{0}+3\right)^{-\frac{1}{2}} \cdot e^{0}=\frac{1}{2} 4^{-1 / 2} \cdot 1=1 / 4$.
52. For which values of x is the line tangent to $g(x)=\sqrt{x^{2}+1}$ horizontal?
(A) 0
(B) 1
(C) -1
(D) $1 / 2$
(E) There is no such x.

Solution: A. By the chain rule, $g^{\prime}(x)=2 x \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}$, which has the value zero when $x=0$.

