Name \qquad
There are 210 points available on this test.

1. (10 points) The line tangent to the graph of a function f at the point $(2,9)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
Solution: The slope of the line through $(2,9)$ and $(0,7)$ is 1 , so $f^{\prime}(2)=1$.
2. (10 points) Find an equation for the line tangent to the graph of $f(x)=x^{2}-3 x$ at the point $(2,-2)$?

Solution: The derivative is $f^{\prime}(x)=2 x-3$ whose value of at $x=2$ is $f^{\prime}(2)=$ $4-4=1$. Thus the line is $y-(-2)=1(x-2)$, which, in slope intercept form is $y=x-4$.
3. (10 points) Find an equation for the line tangent to the graph of $f(x)=$ $\ln (2 x+1)$ at the point $(0,0) ?$

Solution: The derivative is $f^{\prime}(x)=\frac{2}{2 x+1}$ whose value of at $x=0$ is $f^{\prime}(0)=2$. Thus the line is $y-0=2(x-0)$, which, in slope intercept form is $y=2 x$.
4. (10 points) Find an equation for the line tangent to the graph of $y=e^{(2 x-1)}$ at the point on the graph where $x=2$?
Solution: The derivative is $f^{\prime}(x)=2 e^{2 x-1}$ whose value of at $x=2$ is $f^{\prime}(2)=$ $2 e^{3}$. Thus the line is $y-e^{3}=2 e^{3}(x-2)$, which, in slope intercept form is $y=2 e^{3} x-3 e^{3}$.
5. (10 points) Find the rate of change of $f(t)=e^{3 t} \cdot \ln (t)$ when $t=1$.

Solution: Use the product rule to get $f^{\prime}(t)=3 e^{3 t} \cdot \ln (t)+(1 / t) \cdot e^{3 t}$ whose value at $t=1$ is $f^{\prime}(1)=3 e^{3} \cdot \ln (1)+(1 / 1) \cdot e^{3}=e^{3}$, since $\ln 1=0$.
6. (10 points) Let $h(x)=\frac{\sqrt{(x-4)(x-2)(2 x+7)}}{x^{2}-100}$. Write the domain of h in interval notation.
Solution: There are two things to guard against, division by zero and having a negative sign in the radical. Division by zero happens when either $x=10$ or $x=-10$. So we need the sign chart for $(x-4)(x-2)(2 x+7)$, which clearly has zeros at $x=2, x=4$, and $x=-7 / 2$. The sign chart reveals that the product is positive over $(-7 / 2,2)$ and $(4, \infty)$. Therefore, the answer we seek is $[-7 / 2,2] \cup[4,10) \cup(10, \infty)$.
7. (20 points) Let $h(x)=\ln \left(x^{2}+4 x+5\right)$.
(a) What is the domain of h. Recall that $\ln (x)$ is defined only if $x>0$.

Solution: We need to find all values of x for which $x^{2}+4 x+5$ is positive. Compute the discriminant $D=b^{2}-4 a c=16-20<0$ to see that our parabola lies completely above the x-axis. Therefore the domain of h is the whole real line.
(b) Build the sign chart for $h^{\prime}(x)$.

Solution: Since $h^{\prime}(x)=\frac{2 x+4}{x^{2}+4 x+5}$, it follows that the sign chart of h^{\prime} is the same as that of $2 x+4$, which requires straightforward calculation.
(c) Discuss the local max and min of h.

Solution: From the part (b), we can see that h is decreasing up to $x=-2$ and increasing after that, so h must have a minimum at $x=-2$.
8. (15 points) A radioactive substance has a half-life of 22 years. Find an expression for the amount of the substance at time t if 20 grams were present initially.
Solution: $Q(t)=Q_{0} e^{-k t}$. Since $Q_{0}=20$ and the half-life is 22 years, it follows that $10=20 e^{-22 k}$, which can be solved to give $k \approx 0.0315$. Thus $Q(t)=20 e^{-0.0315 t}$.
9. (10 points) If $h=g \circ f$ and $f(1)=3, g^{\prime}(3)=7, f^{\prime}(1)=-2$ find $h^{\prime}(1)$.

Solution: $h^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(3) \cdot f^{\prime}(1)=-14$.
10. (15 points) Let $f(x)=x^{4}+2 x^{3}-12 x^{2}+x-5$.
(a) Find the interval(s) where f is concave upward.

Solution: $f^{\prime}(x)=4 x^{3}+6 x^{2}-24 x+1$ and $f^{\prime \prime}(x)=12 x^{2}+12 x-24$, which has two zeros, $x=1$ and $x=-2$. So $f^{\prime \prime}$ is positive over the intervals $(-\infty,-2)$ and $(1, \infty)$.
(b) Find the inflection points of f, if there are any.

Solution: There are two inflection points, $(1,-14)$ and $(-2,-55)$
11. (15 points) Find the area of the region R bounded above by the graph of $f(x)=x^{2}-3 x+11$, below by the x-axis, and on the sides by the vertical lines $x=0$ and $x=2$.
Solution: The integral is $\int_{0}^{2} x^{2}-3 x+11 d x=\left(x^{3} / 3-3 x^{2} / 2+\left.11 x\right|_{0} ^{2}\right)=$ $(8 / 3-6+22)-0=56 / 3$.
12. (15 points) Find the area of the region R caught between the graph of $f(x)=$ $x^{2}-3 x+2$ and $g(x)=-x+5$.
Solution: First note that the two functions agree at $x=-1$ and $x=3$. You can make this discovery either by factoring the difference function or using the graphing calculator. The area then is the value of the integral $\int_{-1}^{3} g(x)-f(x) d x=\int_{-1}^{3}-x^{2}+2 x+3 d x=-x^{3} / 3+x^{2}+\left.3 x\right|_{-1} ^{3}=9+1 / 3-4=$ $32 / 3$.
13. (40 points)
(a) Evaluate $\int x^{3}-x^{-2}+x^{-1} d x$

Solution: $\int x^{3}-x^{-2}+x^{-1} d x=x^{4} / 4+x^{-1}+\ln (x)+C$.
(b) Evaluate $\int_{1}^{3} \frac{x^{3}-2 x^{2}+x}{x} d x$

Solution: Its just $x^{3} / 3-x^{2}+\left.x\right|_{1} ^{3}=(9-9+3)-(1 / 3-1+1)=8 / 3$.
(c) Evaluate $\int_{0}^{7} \frac{d(x-5)^{9}}{d x} d x$

Solution: Its just $\left.(x-5)^{9}\right|_{0} ^{7}=2^{9}-(-5)^{9}=2^{9}+5^{9}=1953637$.
(d) Evaluate $\int_{0}^{4} \frac{3 x^{2}}{x^{3}+5} d x$

Solution: $\int_{0}^{4} \frac{3 x^{2}}{x^{3}+5} d x=\left.\ln \left(x^{3}+5\right)\right|_{0} ^{4}=\ln (69)-\ln 5 \approx 2.625$.
14. (20 points)
(a) Find the sign chart for the function $g(x)=\frac{(2 x-3)(3 x+1)}{(x-4)(x+2)}$.

Solution: The branch points are the zeros of the numerator and of the denominator, namely $x=3 / 2, x=-1 / 3, x=-2$ and $x=4$. Build the sign chart to reveal that g is positive on the first, third and fifth of the five intervals.
(b) Find all the asymptotes of g.

Solution: The vertical asymptotes are clearly $x=-2$ and $x=4$. The horizontal asymptote is the ratio of the coefficients of the x^{2} terms, namely 6 and 1 . So $y=6$ is the horizontal asymptote.
(c) Use the information in (a) and (b) to sketch the graph of g. Note: the graph must be consistent with (a) and (b) to get credit here.

Solution: I'm not able to draw the graph at this time.

